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4.1. Intr oduction 

Classical statistics provides methods to analyze data, from simple descriptive measures 
to complex and sophisticated models. The available data are processed and then con
clusions about a hypothetical population — of which the data available are supposed to 
be a representative sample — are drawn. 

It is not hard to imagine situations, however, in which data are not the only available 
source of information about the population. 

Suppose, for example, we need to guess the outcome of an experiment that consists 
of tossing a coin. How many biased coins have we ever seen? Probably not many, and 
hence we are ready to believe that the coin is fair and that the outcome of the experiment 
can be either head or tail with the same probability. On the other hand, imagine that 
someone would tell us that the coin is forged so that it is more likely to land head. How 
can we take into account this information in the analysis of our data? This question 
becomes critical when we are considering data in domains of application for which 
knowledge corpora have been developed. Scientific and medical data are both examples 
of this situation. 

Bayesian methods provide a principled way to incorporate this external information 
into the data analysis process. To do so, however, Bayesian methods have to change 
entirely the vision of the data analysis process with respect to the classical approach. In 
a Bayesian approach, the data analysis process starts already with a given probability 
distribution. As this distribution is given before any data is considered, it is called prior 
distribution. In our previous example, we would represent the fairness of the coin as a 
uniform prior probability distribution, assigning probability 0.5 of landing to both sides 
of the coin. On the other hand, if we learn, from some external source of information, 
that the coin is biased then we can model a prior probability distribution that assigns a 
higher probability to the event that the coin lands head. 
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The Bayesian data analysis process consists of using the sample data to update 
this prior distribution into a posterior distribution. The basic tool for this updating is a 
theorem, proved by Thomas Bayes, an Eighteen century clergyman. The fundamental 
role of Bayes’ theorem in this approach is testified by the fact that the whole approach 
is named after it. 

The next section introduces the basic concepts and the terminology of the Bayesian 
approach to data analysis. The result of the Bayesian data analysis process is the pos
terior distribution that represents a revision of the prior distribution on the light of the 
evidence provided by the data. The fact that we use the posterior distribution to draw 
conclusions about the phenomenon at hand changes the interpretation of the typical 
statistical measures that we have seen in the previous chapters. Section 4.3 describes 
the foundations of Bayesian methods and their applications to estimation, model selec
tion, and reliability assessment, using some simple examples. More complex models 
are considered in Section 4.4, in which Bayesian methods are applied to the statistical 
analysis of multiple linear regression models and Generalized Linear Models. Section 
4.5 will describe a powerful formalism known as Bayesian Belief Networks (BBN) and 
its applications to prediction, classification and modeling tasks. 

4.2. The Bayesian Paradigm 

Chapters 2 and 3 have shown that classical statistical methods are usually focused on the 
distribution p(y|θ) of data y, where p(·|θ) denotes either the probability mass function 
or the density function of the sample of n cases y = (y1, . . . , yn) and is known up to 
a vector of parameters θ = (θ1, . . . , θk ). The information conveyed by the sample is 
used to refine this probabilistic model by estimating θ, by testing hypotheses on θ and, 
in general, by performing statistical inference. However, classical statistical methods 
do not allow the possibility of incorporating external information about the problem at 
hand. Consider an experiment that consists of tossing a coin n times. If the results can 
be regarded as values of independent binary random variables Yi taking values 1 and 0 
— where θ = p(Yi = 1) and Yi = 1 corresponds to the event “head in trial i” — the 
likelihood function L(θ) = p(y|θ) (see Chapter 2) is 

L(θ) = θ( 
i 
yi )(1 − θ)(n− 

i 
yi ) 

and the ML estimate of θ is 

ˆ θ = i yi 

n 
, 

which is the relative frequency of heads in the sample. This estimate of the probability 
of head is only a function of the sample information. 

Bayesian methods, on the other hand, are characterized by the assumption that it is 
also meaningful to talk about the conditional distribution of θ, given the information 
I0 currently available. Thus, a crucial aspect of Bayesian methods is to regard θ as a 
random quantity whose prior density p(θ|I0) is known before seeing the data. In our 
previous example, the probability θ of the event “head in trial i” would be regarded as 
a random variable whose prior probability distribution captures all prior information I0 
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about the coin before seeing the experimental results. The prior distribution can arise 
from data previously observed, or it can be the subjective assessment of some domain 
expert and, as such, it represents the information we have about the problem at hand, that 
is not conveyed by the sample data. We shall call this information prior, to distinguish 
it from the data information. For the coin tossing example, we could represent the prior 
information that the coin is fair by adopting a prior density for θ, defined in [0,1], and 
with expectation 0.5. 

The available information changes as new data y are observed, and so does the 
conditional distribution of θ. This operation of revising the conditional distribution of 
θ is done by Bayes’ Theorem: 

p(θ|y, I0) = 
p(y|θ 

p

, 
( 
I 
y 
0 

| 
) 
I

p 

0 

(
) 
θ|I0) 

, (4.1) 

which updates p(θ|I0) into the posterior density p(θ|y, I0). Hence, regarding θ as a 
random quantity gives Bayesian methods the ability to introduce prior information into 
the inferential process that results in a distribution of θ conditional on the total infor
mation available or posterior information 

posterior information = prior information + data information 
I1 = I0 + y 

The probability density p(y|I0) in (4.1) is computed by using the Total Probability 
Theorem: 

p(y|I0) = p(y|θ, I0)p(θ|I0)dθ (4.2) 

and it is also called the marginal density of data, to stress the fact that it is no longer 
conditional on θ. 

The posterior distribution is the result of Bayesian inference. This distribution is 
then used to find a point estimate of the parameters, to test a hypothesis or, in general, 
to find credibility intervals, or to predict future data y, conditional on the posterior 
information I1. The latter task is done by computing the predictive density: 

p(y|I1) = p(y|θ, I1)p(θ|I1)dθ. (4.3) 

Note that (4.3) is essentially (4.2) with I0 replaced by I1 which is now the information 
currently available. If interest is in a subset of the parameters, e.g. θ1, then the con
ditional density of θ1 given I1 can be obtained from the posterior density p(θ|I1) by 
integrating out the nuisance parameters θ2 = θ\θ1: 

p(θ1|I1) = p(θ|I1)dθ2. 

In particular, inference on a single parameter, say θ1, is based on its marginal posterior 
density: 

p(θ1|I1) = p(θ|I1)dθ2 . . . dθk . 
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Similarly, inference on any function of the parameters can be performed. 
Let now I denote the information currently available and y be future data. Thus 

I is either the prior information about a phenomenon or the posterior information re
sulting from updating of prior information via sample data. We shall see, later on, that 
this distinction can be relaxed. In some circumstances, it is reasonable to assume that, 
conditional on θ, knowledge of I is irrelevant to y, and hence 

p(y|θ, I) = p(y|θ). 

In this case, y and I are said to be conditionally independent given θ, and we will 
write i(I, y|θ). The conditional independence assumption is reasonable when θ speci
fies completely the current state of knowledge, so that I cannot add any relevant infor
mation to y, if θ is known. 

� 

I y 

Fig.4.1. Graphical representation of conditional independence assumptions i(I, y|�). 

The stochastic dependence among I , θ and y, together with the conditional inde
pendence of I and y given θ can be graphically represented using the Directed Acyclic 
Graph (DAG) in Figure 4.1. From a qualitative viewpoint, the two directed links point
ing from θ to I and y represent the stochastic dependence of I and y on θ, so that θ is 
called a parent of I and y, and they are both children of θ. There is not a directed link 
between y and I , which can “communicate” only via θ. In other words, θ separates I 
from y and this separation can be interpreted as a conditional independence assump
tion, that is i(I, y|θ) [24]. The stochastic dependence of I and y on θ is quantified 
by the conditional densities p(I|θ) and p(y|θ) that are used to sequentially revise the 
distribution of θ. First, the conditional density p(θ|I) is computed by processing the in-
formation I . This updating operation is represented by the arrow from I towards θ that 
represents the “flow” of information from I to θ via application of Bayes’ Theorem. 
After this first updating, the probability density associated with θ is p(θ|I) and this is 
going to be the prior density in the next inferencial step. When new data arrive, and 
their probability density p(y|θ, I) = p(y|θ) is known, the new piece of information is 
processed locally, along the path θ → y, by applying Bayes’ Theorem again, and the 
conditional density of θ, after this second updating, is p(θ|I, y). Note that this updating 
process can be continuously applied so that inference is a continuous, dynamic process 
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in which new data are used to revise the current knowledge. Thus, the posterior infor
mation I1 that is the updating of some prior information and sample data, becomes the 
current prior information when new data are to be analyzed. Furthermore, this updating 
process can be iteratively applied to each datum at a time and the inference procedure 
can process data as a whole (in batch), as classical methods do, but it can also process 
data one at the time (sequentially). This incremental nature is a further advantage of 
Bayesian methods: the statistical analysis of new data does not require to process again 
data considered so far. 

4.3. Bayesian Infer ence 

Suppose we have a sample of n cases y = {y1, . . . , yn}, generated from a density 
function p(y|θ). The density p(·|θ) is known, up to a vector of unknown parameters. We 
assume that the cases are independent given θ, and hence the joint probability density 
of the sample is 

n 

p(y|θ) = p(yi|θ). 
i=1 

The likelihood function L(θ) = p(y|θ) plays a central role in classical methods. For 
Bayesian methods, the likelihood function is the instrument to pass from the prior den
sity p(θ|I0) to the posterior density p(θ|I0, y) via Bayes’ Theorem. Compared to clas
sical methods, Bayesian methods involve the use of a further element: the prior density 
of θ. The first step of a Bayesian data analysis is therefore the assessment of this prior 
density. 

4.3.1 Prior Elicitation 

The prior density of θ can arise either as posterior density derived from past data or 
it can be the subjective assessment elicited from some domain expert. Several meth
ods for eliciting prior densities from experts exist, and O’Hagan [23, Ch 6] reports a 
comprehensive review. 

A common approach is to choose a prior distribution with density function similar 
to the likelihood function. In doing so, the posterior distribution of θ will be in the same 
class and the prior is said to be conjugate to the likelihood. Conjugate priors play an 
important role in Bayesian methods, since their adoption can simplify the integration 
procedure required by the marginalization in (4.2), because the computation reduces to 
updating the parameters. A list of standard conjugate distributions is given in [2, Ch. 5]. 

Example 1. Let y1, . . . , yn|θ be independent variables taking values 0 and 1, and let 
θ = p(Yi = 1|θ), θ ∈ [0, 1]. The likelihood function is therefore 

L(θ) ∝ θ i 
yi (1 − θ)n− 

i 
yi . (4.4) 

The parameter θ is univariate, and constrained to be in the interval [0, 1]. This restriction 
limits the class of possible priors. A prior density of the form 
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p(θ|I0) ∝ θa−1(1 − θ)b−1 , θ ∈ [0, 1], a, b > 0 

will be conjugate, since it has the same functional form as the likelihood θx(1 − θ)z , 
except for the exponents. This distribution is called a Beta distribution, with hyper-
parameters a and b, and it is sometimes denoted by Beta(a, b). The term hyper-parameter 
is used to distinguish a and b from the parameter θ of the sampling model. Note that, 
compared to the likelihood function (4.4), the hyper-parameters a−1 and b−1 of p(θ|I0) 
play the roles of i yi and n − i yi respectively. Thus, a − 1 and b − 1 can be chosen 
by assuming that the expert has an imaginary sample of 0s and 1s, of size a + b − 2, and 
he can distribute the imaginary cases between 0 and 1 as his prior knowledge dictates. 
The size of this imaginary sample can be used to characterize the subjective confidence 
of the expert in her/his own assessment. Summaries of this distribution are 

aE(θ|I0) = 
a + b 

a − 1mode = 
a + b − 2 

ab 
a + b + 1V (θ|I0) = 

(a + b)2(a + b + 1) 
= 

E(θ|I0)(1 − E(θ|I0)) 

where the mode of a random variable θ with probability density p(θ|I0) is defined as 
the value maximizing the density function. The prior expectation E(θ|I0) corresponds 
to the marginal probability of Y before seeing any data: 

E(θ|I0) = θp(θ|I0)dθ = p(Y = 1|θ)p(θ|I0)dθ = p(Y = 1|I0). 

Since the variance of θ is a decreasing function of a + b for a given mean, the sum of 
the hyper-parameters a + b is also called the precision of the distribution. The posterior 
density is easily found to be: 

p(θ|I0) ∝ θa+ 
i 
yi −1(1 − θ)n+b− 

i 
yi −1 , θ ∈ [0, 1] 

which identifies a Beta distribution with hyper-parameters a + i yi and b + n − i yi. 
Thus, the posterior precision is the prior precision increased by the sample size n. 

Conjugacy restricts the choice of priors to a limited class of distributions and prior 
information can only be used to choose the hyper-parameters. However, if the class 
of distributions is large enough, this limitation is not a serious issue. For instance, in 
Example 1 a choice a = b = 1 yields a prior distribution which is uniform in [0,1], and 
hence uniform prior uncertainty about θ, so that all values are equally likely. Choosing 
a = b implies that the distribution of θ is symmetrical about the prior mean and mode 
that are both equal to 0.5. A choice a < b induces negative skew, so that large values 
of θ are, a priori, more likely. Positive skew can be modeled by chosing a > b. Several 
examples are given in plots (a), (b) and (c) in Figure 4.2. The corresponding posterior 
densities derived from a sample of size n = 10, and i yi = 6 are given in plots (d), (e) 
and (f). Figure 4.2 shows that the effect of the prior distribution is small compared to the 
data when the sample size n is larger than the prior precision (plots (a), (b) versus (d) 
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Fig.4.2. Densities of Beta(a, b) distributions for different choices of the hyper-parameters a and 
b. Continuous lines report symmetric densities: (a) a=b=1; (b) a=b=2; (c) a=b=10. Dotted lines 
are positively skewed densities: (a) a=1.5; b=0.5; (b) a=3; b=1; (c) a=15; b=5. Dashed lines 
represent negatively skewed densities: (a) a=0.5; b=1.5; (b) a=1; b=3; (c) a=5; b=15. Plots (d), 

� and (f) report the corresponding posterior densities derived from a sample of size n = 10, and 

i yi = 6. 

and (e)): posterior densities are very different from prior densities and exhibit a similar 
shape. For instance, when the prior hyper-parameters are a = 0.5 and b = 1.5 (dashed 
line in plot (a)), the prior distribution assigns larger probability to values of θ larger than 
0.5. The impact of the sample information is to concentrate the posterior distribution in 
the range [0.2,0.9], with a median around 0.6. The difference is less evident in plots (c) 
and (f), when the prior precision is larger than the sample size: in this case the posterior 
densities are slightly shifted to take into account the effect of the sample. 

An alternative way to assess prior distributions is based on the concept of Maxi-
mum Entropy: it requires the expert to specify some summaries of the prior distribution, 
such as the mean or the variance, and it returns the prior distribution having maximum 
entropy among the class of distributions with the given summaries. This assessment 
method, due to Jaynes [19, 20], was devised in order to provide probability assessments 
that are subject only to the available information and the prior returned contains as little 
information as possible, apart from the summaries specified. In this way, bias due to 
unintentional subjective components included in the elicitation process is removed, and 
two experts with the same prior information will return the same prior distribution. 
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Example 2 (Maximum Entropy Priors). When θ is univariate and takes all real values, 
and the prior mean and variance are specified, the maximum entropy prior is a normal 
distribution with the specified mean and variance. 

An open problem of Bayesian methods is the choice of a prior distribution representing 
genuine ignorance. When this prior exists, it is called non-informative. If a distribution 
for θ is non-informative, and we make a parameter transformation ψ = g(θ), then 
the distribution of ψ must be non-informative. The Jeffreys’ rule [21] allows us to 
find prior distributions that are invariant under reparameterizations. We first need to 
recall the definition of Fisher information matrix, that was introduced in Chapter 2. 
If the likelihood function L(θ) is known and we define l(θ) = log L(θ), the Fisher 
information matrix I(θ|y) is defined as minus the matrix of the second derivatives of 
the log-likelihood function 

I(θ|y) = − 
∂2l(θ) 
∂θi∂θj 

. 

The expected Fisher information matrix is the matrix I(θ) whose elements are the ex
pectations — over the conditional distribution of the data given θ — of I(θ|y) and 
hence I(θ) = E(I(θ|y)). The matrix I(θ) is used to formulate the Jeffreys prior that 
has density 

p(θ|I0) ∝ det{I(θ)}1/2 , 

with det(·) denoting the determinant of a matrix. If ψ = g(θ), then p(ψ|I0) ∝ det{I(ψ)}1/2 , 
and the prior distribution is invariant with respect to reparameterization. In most cases, 
Jeffreys priors are not technically probability distributions, since their density functions 
do not have finite integrals over the parameter space, and are therefore termed improper 
priors. It is often the case that Bayesian inference based on improper priors returns 
proper posterior distributions which then turn out to be numerically equivalent to the 
results of classical inference [3]. 

Example 3. Let y1, . . . , yn|θ be independent, normally distributed variates with mean 
θ and known variance σ2 . Then, 

p(y|θ) ∝ exp{−n(ȳ  − θ)2/2σ2} 

and I(θ) = n/σ2 , so that the Jeffreys prior for θ is the (improper) uniform distribution 
over the real numbers. Nonetheless, the posterior distribution is 

θ|y ∼ N (ȳ, σ2/n) 

which is a proper distribution. 

Problems related to the use of improper prior distributions can be overcome by as-
signing prior distributions that are as uniform as possible but still remain probability 
distributions. For instance, in Example 3, the prior distribution can be normal with a 
very large variance. This would also be the Maximum Entropy prior, when the prior 
knowledge is extremely uncertain. 
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The use of uniform prior distribution to represent uncertainty clearly assumes that 
equally probable is an adequate representation of lack of information. Recent advances 
question this assumption and advocate the use of bounds on the set of possible values 
that θ can take [16], [29]. Finally, it is worth mentioning that prior distributions elicited 
from several experts can be combined into a single mixture of different distributions 
with weights representing the reliability of each expert (see [23] for more references.) 

4.3.2 Estimation 

Bayesian inference returns the posterior density p(θ|I0, y) = p(θ|I1). Marginal infer
ence on parameters of interest is then based on the marginal posterior distribution, and 
for an individual parameter θ1 on 

p(θ1|I1) = p(θ|I1)dθ2dθ3 . . . dθk. 

A standard point estimate of θ1 is the posterior expectation: 

E(θ1|I1) = θ1p(θ1|I1)dθ1. (4.5) 

An alternative point estimate, based on a principle similar to Maximum Likelihood (see 
Chapters 2 and 3), is the posterior mode: 

θ ̂ 1 = arg maxθ p(θ|I1). (4.6) 

Since p(θ|I1) is proportional to p(y|θ)p(θ|I0), the vector of posterior modes ˆ θ max
imizes the augmented likelihood p(y|θ)p(θ|I0), and it is therefore called the Gen
eralized Maximum Likelihood Estimate (GML estimate) of θ. When the parameters 
θ1, . . . , θk are, a posteriori, independent then 

p(θ|I1) = p(θi|I1) 
i 

and the posterior mode of individual parameters can be computed from the marginal 
posterior densities. 

Example 1 (continued). Since the posterior distribution is still Beta, the posterior mean 
is 

i yi i yi 

n 
a +

E(θ|I1) = 
a + b 

a + b + n 
a 

a + b 
+ 

n 
a + b + n 

= 
a + b + n 

a + b n 
a + b + n 

E(θ|I0) + 
a + b + n 

ȳ= 

which is a weighted average of the prior mean E(θ|I0) and sample mean ȳ, with weights 
depending on the sample size n and the prior precision a + b. If n < a + b, the prior 
mean has a larger weight than the posterior mean. As the sample size increases, prior 
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information becomes negligible and the posterior mean approximates the ML estimate 
ȳ  of θ. The posterior mode 

a + i yi − 1ˆ θ1 = 
a + b + n − 2 

reduces to the standard ML estimate of θ when a = b = 1, and hence the prior distri
bution assumes that all values of θ are equally likely. 

Example 4. Let y1, . . . , yn|θ be independent, normally distributed with mean θ and 
known variance σ2 ≡ τ −2 , where τ 2 is called precision. Then, 

p(y|θ) ∝ exp{−nτ 2(ȳ  − θ)2/2} 

and θ|I0 ∼ N (µ0, σ
2

00 ) is a conjugate prior with hyper-parameters µ0 and σ2 ≡ τ0 
−2 , 

(this is also the Maximum Entropy prior for specified mean and variance.) By conju
gacy, the posterior distribution is N (µ1, σ

2 
1 ) and it can be easily shown, for instance 

[23, page 7], that the posterior hyper-parameters are: 

σ−2 = τ 2 
1 1 = τ0

2 + nτ 2 

µ1 = τ0
2 µ0 + nτ 2 ȳ 


τ 2

1


. 

Thus, the posterior mean is again a weighted average of prior and sample means, with 
weights that depend on the sample size n, the datum precision τ 2 and the prior pre
cision τ0

2 . As in Example 1, there is a trade-off between data and prior information, 
and for small samples the prior mean has a weight larger than the sample mean. As 
the sample size increases, the prior input becomes negligible, and asymptotically the 
Bayesian estimate is the sample mean ȳ. By symmetry, the posterior mode and mean 
are coincident. 

4.3.3 Credibility Inter vals 

Posterior mean and mode provide simple summaries of the posterior distribution that 
can be further used to evaluate the probability that θ is in some given region R, or to 
find a region R that contains θ with a specified probability 1 − α. The latter is called a 
(1 − α)% credibility region, i.e. 

p(θ ∈ R|I1) = 1 − α. 

When R is the region of smallest volume, it is also called the Posterior Highest Density 
(PHD) region. When θ is the univariate parameter θ, the PHD region is an interval. If 
the posterior density of θ is unimodal — i.e. it has a unique mode — the PHD interval 
is [l1, l2] where the two values l1 and l2 are such that 

� 
l

l 

1

2 p(θ|I1)dθ = 1 − α 
p(l1|I1) = p(l2|I1). 
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Computational methods for finding the PHD region in particular problems can be found 
in [1, page 140]. 

Example 3 (continued). Given that the posterior distribution of θ is N (ȳ, σ2/n), a (1 − 
α)% PHD interval is easily found to be: 

σ 
ȳ  ± zα/2 √ ; p(Z > zα/2) = α/2; Z ∼ N (0, 1) 

n 

which is identical to the classical (1 − α)% confidence interval for the mean of a normal 
population when the variance is known (see Chapter 2). However, the meaning of the 
latter is different. The frequentist interpretation of the (1 − α)% confidence interval is 
based on the repeatability of the sampling process, so that if we could take, say, 100 
samples, we would expect that in (1 − α)% of cases the interval ȳ  ± zα/2 √σ contains 

n 

the true value of θ. The (1 − α)% PHD interval returned by the Bayesian method is a 
credibility statement, conditional on the information I1 currently available: we believe 
that, with probability (1 − α), θ belongs to the interval ȳ  ± zα/2 √σ . 

n 

4.3.4 Hypothesis Testing 

The Bayesian approach to hypothesis testing is based on the computation of the con
ditional probability of a hypothesis H given the information currently available. Thus, 
when the null hypothesis H0 : θ ∈ Θ0 and the alternative hypothesis H1 : θ ∈ Θ1, 
with Θ0 ∩ Θ1 = ∅, are formulated, there are prior probabilities on both of them, say 
p(H0|I0) and p(H1|I0), with p(H0|I0) + p(H1|I0) = 1. By the Total Probability The
orem (applied to the discrete case), the prior density of θ is then: 

p(θ|I0) = p(θ|H0, I0)p(H0|I0) + p(θ|H1, I0)p(H1|I0) 

where p(θ|Hi, I0) are the prior densities of θ, conditional on each hypothesis. The 
sample information is then used to compute from the prior odds 

p(H0|I0) 
p(H1|I0) 

the posterior odds in favor of H0 as 

p(H0|I1) 
p(H1|I1) 

p(y|H0) p(H0|I0)= 
p(y|H1) p(H1|I0) 

, 

from which the following decision rule is derived: 

if p(H0|I1) < p(H1|I1) Reject H0 

if p(H0|I1) > p(H1|I1) Accept H0 

if p(H0|I1) = p(H1|I1) Undecidability. 

Compared to classical methods, in which the sampling variability is taken into account 
in the definition of the rejection region of the test (see Chapter 2), the Bayesian ap
proach to hypothesis testing is to accept, as true, the hypothesis with the largest pos
terior probability, since it is the most likely given the information available. The ratio 
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p(y|H0)/p(y|H1) is called the Bayes factor, and when the prior probabilities of H0 

and H1 are equal, the Bayes factor determines the decision rule. The evaluation of the 
Bayes factor involves the computation of two quantities: 

p(y|H0) = � p(y|H0, θ)p(θ|H0, I0)dθ 
p(y|H1) = p(y|H1, θ)p(θ|H1, I0)dθ 

representing the marginal densities of the data on the two parameter spaces specified 
in H0 and H1 respectively. When the two hypotheses are simple, that is, they specify 
completely the parameters values as H0 : θ = θ0 and H1 : θ = θ1, then the Bayes 
factor reduces to the classical likelihood ratio test to discriminate between two simple 
hypotheses. Further details can be found in [1, Chapter 4]. 

Example 5. Let y1, . . . , yn|θ be independent, identically distributed Poisson variates 
with mean θ. Thus 

p(yi|θ) = 
θ

y 

y

i 

i 

! 
e −θ ; θ > 0 yi = 0, 1, 2 . . . 

Let H0 : θ = θ0 and H1 : θ = θ1 be two simple hypotheses, with p(H0|I0) = 
p(H1|I0). The Bayes factor is 

θ0 i 
yi 

N (θ1 −θ0 )e 
θ1 

and hence, since the prior odds are equal to 1, the decision rule is to accept H0 if the 
Bayes factor is greater than 1. 

4.4. Bayesian Modeling 

The examples discussed in Sections 4.3.1–4.3.4 are “toy” examples used to explain the 
Bayesian approach. In this section, we will focus on more realistic models in which 
a response variable Y is a function of some covariates X1, . . . , Xc ∈ X . We begin 
by considering the multiple linear regression model, in which data have a normal dis
tribution whose expectation is a linear function of the parameters. We then consider 
Bayesian methods for the analysis of Generalized Linear Models, which provide a gen
eral framework for cases in which normality and linearity are not viable assumptions. 
These cases point out the major computational bottleneck of Bayesian methods: when 
the assumptions of normality and/or linearity are removed, usually the posterior distri
bution cannot be computed in closed form. We will then discuss some computational 
methods to approximate this distribution. 

4.4.1 Multiple Linear Regr ession 

We begin by considering the standard multiple linear regression model, in which data 
are assumed to have the distribution 

Yi|(µi, τ 2) ∼ N (µi, τ −2) (4.7) 
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conditional on µi and τ 2 . The expectation µi is a linear function of the regression pa
rameters β, with coefficients that are functions of the regression variables X1, . . . , Xc: 

p p 

µi = f (xi)T β = β0 + βj fj (xi) ≡ β0 + βj tij . 
j=1 j=1 

The function f (·) is defined in X and takes values in T ⊂ Rp+1 . This definition allows 
us to consider general regression models as polynomial regression. For example, with 
c = 1 and f (xi) = (1, xi, x

2 
i )

T we have a quadratic regression model µi = β0 +β1xi + 
β2x

2 
i . The linear model can be written in matrix form as 

Y|θ ∼ N (Xβ, τ −2In) 

where X is the n×(p+1) design matrix, whose i-th row contains the coefficients f (xi) 
of the regression parameters, and In is the n × n identity matrix. 

Parameter Estimation The parameter vector θ is given by (β, τ 2). We further suppose 
i(Y1, . . . , Yn|θ), so that the likelihood function is: 

L(θ) ∝ τ n exp(−τ 2 (yi − f (xi)T β)2/2). 
i 

When both β and τ 2 are unknown, the simplest analysis is obtained by assuming a 
conjugate prior for θ, which is specified in two steps: 

(i) Conditional on τ 2 , we assume 

β|τ 2 , I0 ∼ N (β0, (τ 2R0)−1) 

where τ 2R0 is the prior precision. 
(ii) The datum precision τ 2 is assigned a prior distribution: 

τ 2|I0 ∼ χ2
0 )ν0 

/(ν0σ
2 

which corresponds to assigning the error variance σ2 an Inverse Gamma distribu
tion [2, page 119] with density function: 

p(σ2|I0) ∝ (σ2)−(ν0 +2)/2 exp(−ν0σ
2 
0 /(2σ2)). 

The specification of the hyper-parameters ν0, σ2 
0 , β0 and R0 allows the encoding of the 

prior information I0. For instance, the expectation and variance of τ 2 are respectively 
σ−2 and 2σ−4/ν0, so that the expert’s information on the variability of the data can be0 0 
used to define σ−2 , while the choice of ν0 may represent the expert’s assessment of his0 
ability in terms of size of an imaginary sample used to elicit this prior distribution [23, 
Ch. 9]. The prior hyper-parameters and the distribution chosen imply that 

ν0σ
2 2ν2 

0 σ
4 

E(σ2|I0) = 
ν0 − 

0 

2 
, V (σ2|I0) = 

(ν0 − 2)2(ν 
0

0 − 4) 
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provided that ν0 > 4. For 2 < ν0 ≤ 4 the variance does not exists, and for ν0 ≤ 2 the 
mean does not exist. 

Similarly, β0 represents the prior information about the regression model, while R0 

is a measure of the precision of this assessment, for a fixed value of τ 2 . In this way, 
the prior elicitation of the distribution of β can be done independently of the sampling 
variability. The marginal variance of β can be easily found to be: 

ν0σ
2 

V (β|I0) = E{V (β|I0, τ 2)} + V {E(β|I0, τ 2)} = 
ν0 − 

0 

2 
R−1 .0 

The joint prior distribution is known as a Normal-Inverse-Gamma prior. The elicita
tion of the prior distribution in two steps and the conditional independence assumptions 
are represented by the DAG — the Directed Acyclic Graph as defined in Section 4.2 
— in Figure 4.3. The link from τ 2 to β represents the two-step prior elicitation pro-

� 

��������� 

��������������� 

n 

� 

�� 

� 
xn 

Yn 

� 

������ 
µn 

τ 2 

������� 

i 

1 

���� 
� 

��� 

�� 

� 
x1 

Y1 

� µ1 
� 
� 
� 
�� 

Fig.4.3. Graphical representation of a regression model with independent observations given 
� = (�, τ 2). 

cess described above, so that the distribution of τ 2 depends only on the information 
I0 currently available, and then the distribution of β is elicited, conditional on τ 2 . For 
consistency, the node τ 2 should be child of a root node I0 representing the prior infor
mation collected from past experience. For simplicity, this node has been removed from 
the graph. The paths from τ 2 and β to Y1, . . . , Yn — via µi — specify the sampling 
model, and hence the stochastic dependence of Y on β — via µ — and on τ 2 . The 
conditional independence i(Y1, . . . , Yn|θ) is represented by the lack of directed links 
among Y1, . . . , Yn that can communicate only via τ 2 and β. The conditional indepen
dence of the observations given θ is encoded by representing the associations among 
Yi, µi and xi on different plateaux, one for each observation. 
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The quantification of the dependencies is done by associating the prior distribu

ν0 
/(ν0σ

2tion χ2
0 ) to the root node τ 2 , and the distribution N (β0, (τ 2R0)−1) to the 

node β. The joint information of β and values of the covariates are summarized into 
the nodes µ1, . . . , µn that represent linear functions of β with coefficients f (xi) and 
hence they inherit their variability from the “stochastic” parents β. The sampling mod
els N (µi, τ −2) are attached to the nodes Y1, . . . , Yn. 

Data are then processed by applying Bayes’ Theorem in an order which is opposite 
to the order of elicitation of the prior density, so that first there is a flow of information 
from Y1, . . . , Yn to β and the conditional posterior distribution is found to be multivari
ate normal with updated hyper-parameters: 

β|I1, τ 2 ∼ N (β1, (τ 2R1)−1) (4.8) 

R1 = (R0 + XT X) (4.9) 

β1 = R−1(R0β0 + XT y). (4.10)1 

Thus, for fixed τ 2 , the posterior precision of β is increased by the datum precision 
XT X , that is the expected Fisher information matrix, and the posterior expectation is 
an average of prior expectation β0 and data y. Thus, a point estimate of β (conditional 
on τ 2) is 

E(β|I1, τ 2) = R−1R0β0 + R−1XT y = R−1R0β0 + (R0 + XT X)−1XT y1 1 1 

and compared to the ML estimate ˆ β = (XT X)−1XT y (see Chapter 3) there is an 
adjustment to take into account prior information. As the weight of the prior informa
tion becomes negligible compared to the sample information, the Bayesian estimate 
approximates ˆ β. 

The next step is to find the marginal posterior distribution of τ 2 that, by conjugacy, 
is 

τ 2|I1 ∼ χ2
1 ) (4.11)ν1 

/(ν1σ
2 

ν1 = ν0 + n (4.12) 

ν1σ
2 = ν0σ

2
0 R0β0 − βT 

1 0 + yT y + βT 
1 R1β1. (4.13) 

ˆin which the degrees of freedom are increased by the sample size n. Denote by ŷ = Xβ 
the fitted values of the classical regression model and let RSS denote the residual sum 
of squares (y − ˆ y), so that ˆy)T (y − ˆ σ2 = RSS/(n − p − 1) is the classical unbiased 
estimate of the error variance (see Chapters 2 and 3.) Then, it can be shown [23, page 
249] that 

1 0 + RSS + (β0 − ˆ 
0 β)ν1σ

2 = ν0σ
2 β)T (R−1 + (XT X)−1)−1(β0 − ˆ 

so that the expected posterior variance is 

ν0 − 2 n − p − 1 p + 1
ˆE(σ2|I1) = 

ν0 + n − 2
E(σ2|I0) + 

ν0 + n − 2 
σ2 + 

ν0 + n − 2 
d 
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where d = (β0 − ˆ 
0 β)/(p + 1). Therefore, E(σ2|I1)β)T (R−1 + (XT X)−1)−1(β0 − ˆ 

provides an estimate of the error variance, which combines prior information E(σ2|I0), 
the standard unbiased estimate of the error variance σ̂2 and d, that is a weighted dis
crepancy between β0 and ˆ β representsβ. Thus, a large discrepancy between β0 and ˆ 

the fact that the prior information is scarce and hence the expected posterior variance is 
large. 

Inference on the regression parameters is performed by computing the marginal 
posterior distribution of β: 

N (0, σ2 
1 R

−1)
β|I1 = β1 + � 

ν1 
/ν 

1

1χ2 

which is a non-central multivariate t-distribution — that is a multivariate t-distribution, 
with non zero expectation [2, page 139] — and it can be used to provide credibility 
regions or PHD regions. For instance, with tα/2 denoting the upper α/2 quantile of a 
Student’s t distribution on ν1 degrees of freedom, the (1 − α)100% PHD interval for βi 

is given by: 

β1i ± tα/2 σ2 
1 vi 

where vi denotes the ith diagonal element of (R0 + XT X)−1 . Further details can be 
found for instance in [23, Ch 9]. Prior uncertainty can be modeled by assuming R0 ≈ O, 
ν0 = −(p + 1) and σ2 

0 

and 

= 0, so that 

τ 2|I1 ∼ χ2 
n−p−1/RSS 

β|τ 2 , I1 ∼ N (ˆ β, (τXT X)−1) 

ν1 = n − p − 1 
R1 = XT X 

ˆE(β|I1) = β 
E(σ2|I1) = RSS/(n − p − 1) 

(4.14) 

(4.15) 

In this way, the Bayesian estimates of σ2 and β reduce to the classical ML estimate. 

Example 6 (Simple Linear Regression). 
Suppose that we are interested in a simple linear regression model for Y on X . We 

assume that 

Y |(β, τ ) ∼ N (µ = β0 + β1x, τ −2) 

and the parameters are assigned the prior distributions: 

τ 2|I0 ∼ χ2
0 )ν0 

/(ν0σ
2 

and 
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� � �� � � � ��−1 
� 

β0 β00 r00 r01β = 
β1 

|τ 2 , I0 ∼ N 
β01 

, τ 2 

r01 r11 
. 

With a sample of n independent observations given θ = (τ 2 , β0, β1), the posterior 
distribution of the parameters is 

� � �−1 
� 

ν1 
/(ν1σ

2τ 2|I1 ∼ χ2
1 ); β|τ 2 , I1 ∼ N β1, τ 2R1 

with 

xr00 + n r01 +�n¯
R1 = 

r01 + n¯ 
. 

x r11 + i xi 
2 

A choice R0 ≈ O, ν0 = −2 and σ2 = 0 yields0 

n−2/RSS; β|τ 2 , I1 ∼ N (ˆ τ 2|I1 ∼ χ2 β, (τ 2XT X)−1) 

and inference on the regression parameters is based on the Student’s t distributions: 

β0 − β10 β1 − β11� ∼ tn−2; � ∼ tn−2
RSSv1/(n − 2) RSSv2/(n − 2) 

where v1, v2 are the diagonal elements of R−1 = (XT X)−1 .1 

The posterior distribution of the parameters can also be used to predict new cases 
y|θ ∼ N ( ˜˜ Xβ, τ −2Im). The analysis is based on the evaluation of the conditional 
distribution of ỹ|y, which again involves the use of a multivariate Students’ t distribu
tion. Details are given for instance in [23, Ch 9], and application to real data-sets are 
provided by [12]. The generalization of the approach described in this section to models 
with correlated observations involves the use of “matrix-form” distributions as Wishart 
and can be found in [2, 3]. 

Model Selection Our task becomes more challenging when we are interested in discov
ering the statistical model best fitting the available information. Let M = {M0,M1, . . . , Mm}
be the set of models that is believed a priori to contain the true model of dependence of 
y on X1, . . . , Xc. For instance with c = 1, the set M can contain the nested models 

M0 : µ = β0 

M1 : µ = β0 + β1x 
2M2 : µ = β0 + β1x + β2x . 

Each model induces a parameterization Mi → θ(i) = (β(i) , τ 2), e.g. β(0) = β0, 
β(1) = (β0, β1)T , β(2) = (β0, β1, β2)T in the example above. Prior information I0 

allows the elicitation of prior probabilities of M0, . . . ,Mm, and, conditional on Mi, 
of prior distributions for θ(i). Graphically, this is equivalent to assume the existence 
of a further node corresponding to M in Figure 4.3, with links towards τ 2 and β(i), 
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Fig.4.4. Graphical representation of a regression model with independent observations given 
�(i) = (�, τ 2), conditional on a model. 

and the parameterization induced by each model is represented by a different plateau, 
as in Figure 4.4. Note that the parameters β(i) are conditionally independent given 
M and τ 2 . Suppose that we wish to use the prior and sample information to select 
a regression model Mi from M. We can use the sample information to compute the 
posterior probability of Mi given the data and the prior information I0 

p(Mi|I1) = 
p(Mi|I0)p(y|Mi) 

, 
p(y|I0) 

and then we choose the model with the largest posterior probability. Since the denom
inator is constant, in the comparison between rival models Mi and Mj , Mi is chosen 
if 

p(Mi|I0)p(y|Mi) > p(Mj |I0)p(y|Mj ). 

When p(Mi|I0) = p(Mj |I0) the model choice reduces to the evaluation of the Bayes 
factor 

p(y|Mi) 
p(y|Mj ) 
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and Mi is chosen if the Bayes factor is greater than one. The quantity p(y|Mi) is the 
marginal likelihood (marginal with respect to θ(i)) of the data given the model Mi, 
which is computed as: 

p(y|Mi) = p(y|β(i) , τ 2)p(β(i) , τ 2|I0)dβ(i)dτ 2 

and the integral has the closed form solution: 

det(R(i))1/2(ν0σ
2 

0 0 )
ν0 /2Γ (ν1/2) 

1 )ν1 /2Γ (ν0/2)πn/2 
p(y|Mi) = 

det(R(i))1/2(ν1σ2 
1 

where the indexes 0 and 1 specify the prior and posterior hyper-parameters of β(i) and 
τ 2 . We note that the approach described here gives the same weight to the likelihood 
and the complexity of a model. More advanced techniques, based on Decision Theory 
or Information Theory, let us trade off between the complexity and the likelihood of a 
model. A complete treatment of this problem can be found in [1, Ch 4] and[23, Ch 9]. 

When the inference task is limited the prediction of future cases, a weighted average 
of the models in M, with the posterior probability of each model as weights, can be used 
instead of one single model [17]. 

4.4.2 Generalized Linear Models 

Generalized Linear Models (GLM) provide a unified framework to encompass several 
situations which are not adequately described by the assumptions of normality of the 
data and linearity in the parameters. As described in Chapter 3, the features of a GLM 
are the fact that the distribution of Y |θ belongs to the exponential family, and that a 
transformation of the expectation of the data, g(µ), is a linear function of the parameters 
f (xi)T β. The parameter vector is made up of β and of the dispersion parameter φ. The 
problem with a Bayesian analysis of GLMs is that, in general, the posterior distribution 
of θ cannot be calculated exactly, since the marginal density of the data 

p(y|I0) = p(y|I0, θ)p(θ|I0)dθ 

cannot be evaluated in closed form, as the next example shows. 

Example 7 (Logistic regression). Suppose that, conditional on the vector of parameters 
θ = β, data have a Binomial distribution with p(Y = 1|θ) = µ. The dispersion 
parameter is φ = 1. The logit function is the canonical link (see Chapter 3) 

µi 
g(µi) = log 

1 − µi 
= ηi = f (xi)T β. 

Let p(β|I0) be the prior density. With a sample of n cases — corresponding to n com
binations of values of the covariates — and supposed to be conditionally independent 
given β, the likelihood function is 
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n n� � eηi yi 

L(β) = µy
i 

i (1 − µi)1−yi = 
1 + eηi 

i=1 i=1 

and the marginal density of the data solves the integral 

� � eηi yi 
n 

1 + eηi 
p(β|I0)dβ. (4.16) 

i=1 

To date, there are no known prior distributions which lead to a closed form solution of 
(4.16). 

Numerical integration techniques [23] can be exploited to approximate (4.16), from 
which a numerical approximation of the posterior density of β can be found. The basic 
idea is to select a grid of points {β1, . . . , βg } and replace the value of the integral by 
their weighted sum: 

n n� � eηi yi � � eηij yi 

wj 

i=1 
1 + eηi 

p(β|I0)dβ ≈ 
j i=1 

1 + eηij 
p(βj |I0). 

However, as the dimension of the parameter space increases, numerical integration be-
comes infeasible, because it is difficult to select a suitable grid of points and it is hard 
to evaluate the error of the approximation [9]. 

4.4.3 Approximate Methods 

When numerical integration techniques become infeasible, we are left with two main 
ways to perform approximate posterior analysis: (i) to provide an asymptotic approxi
mation of the posterior distribution or (ii) to use stochastic methods to generate a sample 
from the posterior distribution. 

Asymptotic Posterior Distrib utions When the sample size is large enough, posterior 
analysis can be based on an asymptotic approximation of the posterior distribution to a 
normal distribution with some mean and variance. This idea generalizes the asymptotic 
normal distribution of the ML estimates when their exact sampling distribution cannot 
be derived or it is too difficult to be used (see Chapter 2.) 

Berger [1, page 224] mentions four asymptotic normal approximations of the pos
terior distribution of the parameter vector θ. The approximations are listed below differ 
in the way the mean and variance of θ|I1 are computed and are of decreasing accu
racy. Recall that the dimension of θ is k and that E(θ|I1) and V (θ|I1) denote the exact 
posterior mean and variance of θ. 

1. θ|I1 is approximately N (E(θ|I1), V (θ|I1)). 
2. θ|I1 is approximately N (ˆ θ1|I1))−1), where ˆ θ1, (I(ˆ θ1 is the GML estimate of θ, 

ˆi. e., θ1 maximizes the augmented likelihood L(θ)p(θ|I0) = p(y|θ)p(θ|I0) and 
I(ˆ θ1|I1) is the value of the k × k matrix having element i, j: 
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I(θ|I1)ij = − 
∂2 log{p(y|θ)p(θ|I0)}

∂θi∂θj 

evaluated in the GML estimate ˆ θ1. 
3. θ|I1 is approximately N (ˆ θ|y))−1), where ˆ θθ, (I(ˆ θ is the ML estimate of θ, i.e. ˆ 

maximizes the likelihood L(θ) = p(y|θ) and the matrix I(ˆ θ|y) is the observed 
Fisher information matrix, that is, the value of the Fisher information matrix 

I(θ|y)ij = − 
∂2 log p(y|θ) 

∂θi∂θj 

evaluated in the ML estimate ˆ θ. 
4. θ|I1 is approximately N (ˆ θ))−1), where the matrix I(ˆ θ, (I(ˆ θ) is the expected Fisher 

information matrix I(θ) evaluated in the ML estimates. Thus, I(ˆ θ) is the value of 
the k × k matrix having element i, j: 

θ)ij = −E 
∂2 log p(y|θ)

I(ˆ 
∂θi∂θj 

evaluated in the ML estimate ˆ θ and the expectation is over the conditional distribu
tion of the data given θ. 

The first approximation is the most accurate, as it preserves the exact moments of the 
posterior distribution. However, this approximation relies on the computation of the 
exact first and second moments [23, Ch 8]. When exact first and second moments can-
not be computed in closed form, we must resort to the second approximation, which 
replaces them by approximations based on the maximization of the augmented like
lihood. Hence, the prior information is taken into account in the calculations of both 
moments. As the sample size increases and the prior information becomes negligible, 
the second and third approximation become equivalent. The fourth approximation is the 
least accurate and relies on the idea that, for exponential family models, expected and 
observed Fisher information matrices are identical, since the matrix of second deriva
tives depends on the data only via the ML estimates. 

Asymptotic normality of the posterior distribution provides notably computational 
advantages, since marginal and conditional distributions are still normal, and hence 
inference on parameters of interest can be easily carried out. However, for relatively 
small samples, the assumption of asymptotic normality can be inaccurate. 

Stochastic Methods For relatively small samples, stochastic methods (or Monte Carlo 
methods) provide an approximate posterior analysis based on a sample of values gen
erated from the posterior distribution of the parameters. The posterior analysis requires 
the evaluations of integrals: 

E(g(θ)|I1) = g(θ)p(θ|I1)dθ. 
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For instance, for g(θ) = θ, E(g(θ)|I1) is the posterior expectation. When the exact in
tegration is not possible, Monte Carlo methods replace the exact integral E(g(θ|I1)) by 

i g(θi)/s where θ1, . . . , θs is a random sample of size s generated from θ|I1. Thus, 
the task reduces to generating a sample from the posterior distribution of the parame
ters. Here we will describe Gibbs Sampling (Gs), a special case of Metropolis-Hastings 
algorithms [13], which is becoming increasingly popular in the statistical community. 
Gs is an iterative method that produces a Markov Chain, that is a sequence of values 
{θ(0) , θ(1) , θ(2) . . .} such that θ(i+i) is sampled from a distribution that depends on the 
current state i of the chain. The algorithm works as follows. 

Let θ(0) = {θ(0) 
, · · · , θ(0)} be a vector of initial values of θ and suppose that the1 k 

conditional distributions of θi|(θ1, · · · , θi−1, θi+1, · · · , θk , y) are known for each i. The 
first value in the chain is simulated as follows: 

θ
(1) is sampled from the conditional distribution of θ1|(θ(0) 

, · · · , θ(0) 
, y);1 2 k 

θ
(1) is sampled from the conditional distribution of θ2|(θ(1) 

, θ
(0) 

, · · · , θ(0) 
, y)2 1 3 k 

. . . 

θ
(1) is sampled from the conditional distribution of θk|(θ(1) 

, θ
(1) 

, · · · , θ(1) 
k 1 2 k−1, y) 

Then θ(0) is replaced by θ(1) and the simulation is repeated to generate θ(2), and so 
forth. In general, the i-th value in the chain is generated by simulating from the distri
bution of θ conditional on the value previously generated θ(i−1). After an initial long 
chain, called burn-in, of say b iterations, the values 

{θ(b+1) , θ(b+2) , θ(b+3) . . .} 

will be approximately a sample from the posterior distribution of θ, from which empir
ical estimates of the posterior means and any other function of the parameters can be 
computed as 

s1 � 
g(θ(i)) 

s − b 
i=b+1 

where s is the total length of the chain. Critical issues for this method are the choice 
of the starting value θ(0), the length of the burn-in and the selection of a stopping rule. 
The reader is referred to [15] for a discussion of these problems. The program BUGS 
[28] provides an implementation of Gs suitable for problems in which the likelihood 
function satisfies certain factorization properties. 

4.5. Bayesian Networks 

The graphical models that we have used to represent dependencies between data and 
parameters associated with the sampling model can be further used to describe directed 
associations among sets of variables. When used in this way, these models are known 
as Bayesian Belief Networks (BBN) and they result in a powerful knowledge represen
tation formalism, based on probability theory, widely use in Artificial Intelligence. In 
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this section, we will outline the foundations of BBNs and we will describe how to use 
BBNs to analyze and model data. 

4.5.1 Foundations 

Formally, a BBN is defined by a set of variables Y = {Y1, . . . , YI } and a DAG defining 
a model M of conditional dependencies among the elements of Y . We will consider 
discrete variables and denote by ci the number of states of Yi and by yik a state of Yi. 
A conditional dependency links a child variable Yi to a set of parent variables Πi, and 
it is defined by the conditional probability distributions of Yi given each configuration 
πi1, . . . , πiqi of the parent variables. We term descendents of a node Yi all nodes that 
can be reached from Yi through a directed path, that is, following the direction of the 
arrows. Nodes that are not descendent of Yi are, obviously, called non-descendent of 
Yi. The separation of Yi from its non-descendent Nd(Yi) given its parents Πi implies 
that i(Yi, Nd(Yi)|Πi). Hence, the conditional independence assumptions encoded by 
the directed graphical structure induce a factorization of the joint probability of a set of 
values yk = {y1k , . . . , yIk } of the variables in Y as 

I 

p(yk ) = p(yik|πij(ik)), (4.17) 
i=1 

where πij(ik) denotes the configuration of states of Πi in yk. The index j(ik) is a func
tion of i and k, as the parents configuration πij(ik) in a set of values yk is determined 
by the index i, that specifies the child variable and hence identifies the set of parent 
variables, and the index k that specifies the states of the parent variables. For notation 
simplicity, we will denote a parents configuration by πij . 

Y1� Y2 � 

� Y3 � 

Fig.4.5. A simple BBN. 

Example 8 (A simple BBN). 
Consider the BBN in Figure 4.5, in which the set Y is {Y1, Y2, Y3} and ci = 2 for 

i = 1, 2, 3. The graph encodes the marginal independence of Y1 and Y2, which in turn 
are both parents of Y3. Thus 

Π1 = Π2 = ∅, Π3 = (Y1, Y2). 
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Note that Π3 takes four values πij corresponding to the four combinations of states of 
Y1 and Y2. We will denote these four states as π31 = (y11, y21), π32 = (y11, y22), π33 = 
(y12, y21) and π34 = (y12, y22). The joint probability of a case yk = {y11, y21, y32}
can then be written as 

p(yk ) = p(y11)p(y21)p(y32|y11, y21) = p(y11)p(y21)p(y32|π31). 

If Y3 has a child variable, say Y4, then the separation of Y4 from Y1, Y2 via Y3 implies 
that i(Y4, (Y1, Y2)|Y3), and the joint probability of yk = {y1k, y2k , y3k, y4k } factorizes 
into 

p(yk) = p(y1k )p(y2k )p(y3k |π3j )p(y4k|π4j ), 

with π4j = y3k . Thus, the graphical component of a BBN provides a simple way to 
describe the stochastic dependencies among variables. As mentioned in Chapter 3, the 
directed links can be given, under some conditions, a causal interpretation, see for in-
stance the review in [17]. 

The conditional independence assumptions encoded by a BBN have the further ad-
vantage of simplifying the computations of conditional probabilities given some evi
dence, that is a set of values observed in the network. Thus, tasks as prediction, explana
tion and classification can be efficiently performed, as shown in the next two examples. 

Example 9 (Representation). Consider the BBN in Figure 4.6, in which the variables 
are all binary. Directed links identify parent-child dependencies, and hence: 

Y1 Y2 Y3 Y6� � � � � � �

Y4 Y5 

Fig.4.6. A BBN with 6 binary variables. 

Π1 = ∅ Π2 = Y1 

Π3 = Y2 Π4 = Y2 

Π5 = (Y3, Y4) Π6 = (Y3, Y5) 

The graph encodes the following conditional independence assumptions: 

1. i(Y3, Y1|Y2) 
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2. i(Y4, Y1|Y2) 
3. i(Y5, (Y1, Y2)|(Y3, Y4)) 
4. i(Y6, (Y1, Y2, Y4)|(Y3, Y5)). 

Thus, the joint probability of one case 

yk = (y1k, y2k , y3k, y4k , y5k , y6k) 

can be decomposed into a set of independent parent-child contributions as: 

p(yk) = p(y1k)p(y2k|y1k )p(y3k |y2k )p(y4k |y2k)p(y5k|y3k , y4k )p(y6k |y3k, y5k ) 
= p(y1k)p(y2k|π2j )p(y3k |π3j )p(y4k |π4j )p(y5k |π5j )p(y6k |π6j ) 

The advantage of this description is that the joint probability of the 6 variables would 
require 26 − 1 = 63 independent numbers, that are reduced to 1+2+2+2+4+4 = 15 
when the conditional independence assumptions 1–4 are exploited.1 

Using BBNs, we can easily make predictions about the value of a variable in a given 
situation by computing the conditional probability distribution of the variable given the 
values of a set of some other variables in the network. Suppose, for instance, that we 
are interested in the value of variable Y6 when the variables Y3 and Y4 are observed to 
be in the states y31 and y41. By the Total Probability Theorem 

p(y61|y31, y41) = p(y61, y5j |y31, y41) 
j 

= p(y5j |y31, y41)p(y61|y5j , y31). 
j 

Thus, the conditional probability of interest is expanded to include all variables be-
tween the conditioning variables Y3 and Y4, and Y6, and then factorized to account 
for the conditional independence assumptions encoded by the DAG. Within this frame-
work, the marginal probability p(y61) that would be computed by marginalizing the 
joint probability 

p(y61) = p(y61, y5j , y4k, y3m, y2n, y1r ) 
jkmnr 

can be computed as: 

p(y61) = p(y61|y5j , y3m) p(y5j |y3m, y4k ) p(y3m|y2n)p(y4k |y2n) × 
jm k n 

p(y2n|y1r)p(y1r ) 
r 

by taking advantage of the locality structure of the parent-child configurations. 
1 Since the variables are binary, each conditional distribution is identified by one number, and 

hence 1+ 2 + 2 + 2 + 4 + 4 is the sum of conditional distributions defined by the parent 
configurations. 
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A network structure of particular interest for data analysis is displayed in Figure 4.7 
and it is known as the Naive Bayesian Classifier. 

Example 10 (Naive Bayesian Classifier). 
The BBN in Figure 4.7 represents a Naive Bayesian Classifier, in which a set of 

mutually exclusive classes is represented as the root node, and the attributes of the 
objects to be classified depend on this variable. The simplifying assumptions made 

Y1 � 

� � 

Y2 Y3 

Fig.4.7. A Naive Bayesian Classifier. 

by this model, which brings it the name of ”naive”, are that the classes are mutually 
exclusive and that the attributes are independent given the class. The meaning of this 
assumption is that, once we know the class to which an object belongs, the relations 
between its attributes become irrelevant. In the example depicted in Figure 4.7, the root 
node Y1 represent the set of mutually exclusive classes and the leaf nodes Y2 and Y3 

are the attributes. As the model assumes i(Y2, Y3|Y1), the joint probability distribution 
is decomposed into 

p(y1k , y2k, y3k ) = p(y1k)p(y2k|y1k )p(y3k |y1k ). 

Although the underlying structure is so simple to be termed “naive”, this model per-
forms well in classification problems with a large number of attributes [10] in which 
the task is to classify a unit presenting a combination of attribute values into one of the 
states of the variable Y1. 

The conditional independence assumptions represented by the model allow the clas
sification to be performed in a very efficient way. Suppose that a unit with attributes y2j 

and y3k is to be assigned to one of the states of the variable Y1. The solution is to com
pute the posterior probability p(y1i|y2j , y3k) for all i, and then the unit is assigned to 
the class with the largest posterior probability. Thus, the problem reduces to computing 
p(y1i|y2j , y3k ) which is given by: 

p(y1i)p(y2j |y1i) p(y3k|y1i) 
p(y1i|y2j , y3k ) = � 

r p(y2j |y1r )p(y1r ) 
� 

r p(y3k|y1r )p(y1r |y2j ) 
. 

The factorization into terms that depend on the associations Y1, Y2, and Y1, Y3 is an 
advantage of Bayesian methods described in section 4.2. We first have a flow of infor
mation from Y2 to Y1 by applying Bayes’ Theorem: 
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p(y1i)p(y2j |y1i) 

r p(y2j |y1r )p(y1r )
= p(y1i|y2j ). 

After the first updating, the probability distribution of the class node is P (Y1|y2j ), and 
this is used as prior distribution in the next step, to process the information incoming 
from node Y3: 

p(y3k |y1i)p(y1i|y2j ) 

r p(y3k |y1r )p(y1r |y2j ) 
. 

This can be clearly extended to the case of several attributes, and the computation of 
the conditional probability of Y1 given a combination of attribute values is found by 
processing the information incoming from one attribute node at a time. 

In this special case, the network structure allows an efficient computation of the 
posterior distribution of the variable of interest, in time linear with respect to the num
ber of attributes. Unfortunately, this is not the case for any DAG. Nonetheless, more 
general (but less efficient) algorithms are available to compute a conditional probability 
distribution in a generic DAG. The interested reader can find a review of some of these 
algorithms in [24, 6]. 

4.5.2 Learning Bayesian Networks From Data 

In their original concept, BBNs were supposed to rely on domain experts to supply 
information about the conditional independence graph and the subjective assessment of 
the conditional probability distributions that quantify the dependencies. However, the 
statistical roots of BBNs soon led to the development of learning methods to extract 
them directly from databases of cases rather than from the insight of human domain 
experts [7, 4, 18], thus turning BBNs into a powerful tool for the analysis of data. 

Suppose we are given a sample of n cases y = {y1, . . . , yn} from which we wish 
to induce a BBN. Note that the sample is now multivariate, since each case yk in the 
sample is a row vector 

yk = (y1k, . . . , yIk) 

corresponding to a combination of states of the I variables. Thus, y is a n × I matrix. 
Two components of a BBN can be learned: the graphical structure M , specifying the 
conditional independence assumptions among the variables in Y , and, given a graph M , 
the conditional probabilities associated to the remaining dependencies in the graph. We 
first suppose the graphical structure M given and we focus attention on the second task. 

Parameter Estimation Given a DAG M , the conditional probabilities defining the 
BBN are the parameters θ = (θijk ), where θijk = p(yik|πij , θ), that we wish to esti
mate from y. We shall denote by θij = (θij1, . . . , θijci ) the parameter vector associated 
to the conditional distribution of Yi|πij , to be inferred from y. Graphically, we can ex
pand the BBN by adding, to each variable Yi, new parent variables representing the 
parameters that quantify the conditional distribution of Yi|πij . 
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�1 �2 

� �Y1 � �Y2 

� � 
� � 

� � � � ��31 � Y3� �32�

�� 
�34� 

�� 
���33 

Fig.4.8. A Simple BBN augmented by parameters. 

Example 8 (continued). The BBN in Figure 4.5 can be expanded into the BBN in Fig
ure 4.8 by adding the parameters that quantify the dependencies. we show that six 
parameters θ = (θ1, θ2, θ31, θ32, θ33, θ34) are needed. Since the variables Y1 and Y2 

are binary, their marginal distributions are defined by two parameters: θ1 = p(y11|θ) 
and θ2 = p(y21|θ). From the two distributions of Y1 and Y2, we can define the joint 
distribution of the parent variable Π3, parent of Y3. Note that Y1 and Y2 are marginally 
independent, so that the distribution of Π3 is specified by θ1 and θ2 as p(π31|θ) = θ1θ2; 
p(π32|θ) = θ1(1 − θ2); p(π33|θ) = (1 − θ1)θ2 and p(π34|θ) = (1 − θ1)(1 − θ2). Each 
parent configuration π3j defines a conditional distribution Y3|π3j . The variable Y3 is 
binary, and hence each of these conditional distributions is identified by one parameter: 
θ3j1 = p(y31|π3j , θ) for j = 1, 2, 3, 4. From these parameters, we obtain the parameter 
vectors θ1 = (θ11, 1 − θ11) associated to the distribution of Y1, θ2 = (θ21, 1 − θ21) 
associated to the distribution of Y2, θ31 = (θ311, 1 − θ311) associated to the distri
bution of Y3|π31, θ32 = (θ321, 1 − θ321) associated to the distribution of Y3|π32, 
θ33 = (θ331, 1−θ331) associated to the distribution of Y3|π33 and θ34 = (θ341, 1−θ341) 
associated to the distribution of Y3|π34. 

The standard Bayesian method to estimate θ uses conjugate analysis. Let n(yik |πij ) 
be the frequency of pairs (yik , πij ) in the sample, and let n(πij ) = k n(yik |πij ) 
be the frequency of πij . The joint probability (4.17) of a case yk can be written as a 
function of the unknown θijk as 

I 

p(yk |θ) = θijk , 
i=1 

where the index j is uniquely identified by i and k. If cases yk are independent, the 
likelihood function is given by the product of terms p(yk |θ) 

n I qi ci 

L(θ) = p(yk |θ) = θ
n(yik |πij ) 

.ijk 
k=1 i=1 j=1 k=1 

Thus, p(y|θ) factorizes into a product of local parents-child contributions: 
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qi ci 

θ
n(yik |πij ) 
ijk 

j=1 k=1 

and each of these terms is itself a product of terms that depend on the parent configura�citions: k=1 θ
n(yik |πij ) .ijk 

A common assumption [27], matching the factorization of the likelihood into parents-
child contributions, is that the parameter vectors θij and θi� j� associated to different 
variables Yi and Yi� are independent for i �= i� (global independence). If the parameters 
θij and θij� associated to the distributions of Yi, given different parent configurations 
πij and πij� (j �= j�), are further assumed to be independent (local independence), the 
joint prior density p(θ|I0) factorizes into the product 

I qi


p(θ|I0) = p(θij |I0).

i=1 j=1


When the sample y is complete, that is there is not entry reported as unknown, local 
and global independence induce an equivalent factorization of the posterior density of 
θ: 

ci 

p(θ|I1) ∝ p(θij |I0) θ
n(yik |πij ) 
ijk 

ij k=1 

and this factorization allows us to independently update the distribution of θij , for all 
i, j, thus reducing the updating process to a local procedure. A further saving in compu
tation is achieved if, for all i and j, the prior distribution of θij is a Dirichlet distribution 
with hyper-parameters {αij1, · · · , αijci }, αijk > 0 for all i, j, k. We use the notation 

θij |I0 ∼ D(αij1, . . . , αijci ). 

This distribution generalizes the Beta distribution described in Example 1 to vectors of 
parameters that represent probabilities. In this case, the prior density of θij is, up to a 
proportionality constant, 

p(θij |I0) ∝ θ
αijk −1 
ijk 

k 

which is conjugate to the local likelihood 
�ci 

ijkk=1 θ
n(yik |πij ) , since the functional form 

of this density function matches that of the likelihood. The prior hyper-parameters αijk 

encode the observer’s prior belief and, since αijk − 1 plays the role of n(yik |πij ) in the 
likelihood, they can be regarded as frequencies of imaginary cases needed to formulate 
the prior distribution. The quantity αij −ci = 

�ci 

k=1(αijk −1) represents the frequency 
of imaginary cases observed in the parent configuration πij and hence αij is the local 
precision. If the hyper-parameters αijk are given this interpretation, αi = j αij is the 
global precision on θi, that is, the parameter vector associated to the marginal distri
bution of Yi. For consistency, we must assume that the imaginary sample has an equal 
number of observations αi = α for all the variables Yi. It can also be shown [11], that 
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this consistency condition is necessary to enforce the local and global independence of 
the parameters. 

The effect of the quantities αijks is to specify the marginal probability of (yik |πij ) 
as 

αijk
E(θijk|I0) = 
αij 

= p(yik|πij ).


Furthermore, the prior variance is 

V (θijk|I0) = 
E(θijk ){1 − E(θij )} 

,
αij + 1 

and, for fixed E(θijk ), V (θijk) is a decreasing function of αij , so that a small value of 
αij will denote great uncertainty. The situation of initial ignorance can be represented 
by assuming αijk = α/(ciqi) for all i, j and k, so that the prior probability of (yik |πij ) 
is simply 1/ci. An important property of the Dirichlet distribution is that it is closed 
under marginalization, so that if 

θij |I0 ∼ D(αij1, . . . , αijci ) �sthen any subset of parameters (θij1, . . . , θijs, 1 − k=1 θijk ) will have a Dirichlet dis�stribution D(αij1, . . . , αijs, αij − k=1 αijk ). In particular, the parameter θijk will 
have a Beta distribution with hyper-parameters αijk, αij − αijk . Thus, marginal infer
ence on parameters of interest can be easily carried out. 

Spiegelhalter and Lauritzen [27] show that the assumptions of parameter indepen
dence and prior Dirichlet distributions imply that the posterior density of θ is still a 
product of Dirichlet densities and 

θij |I1 ∼ D(αij1 + n(yi1|πij ), . . . , αijci + n(yici |πij )) 

so that local and global independence are retained after the updating. The information 
conveyed by the sample is therefore captured by simply updating the hyper-parameters 
of the distribution of θij by increasing them of the frequency of cases (yijk, πij ) ob
served in the sample. Thus, the sample information can be summarized into the con
tingency tables collecting the frequencies of the parents-child dependency. Table 4.1 
below provides an example of such a contingency table. 

The posterior expectation of θijk becomes: 

E(θijk |I1) = 
αijk + n(yik|πij ) 

αij + n(πij ) 

and the posterior mode is 

αijk + n(yik |πij ) − 1 
. 

αij + n(πij ) − ci 

The posterior variance is given by: 

V (θijk |I1) = 
E(θijk|I1){1 − E(θijk |I1)}

αij + n(πij ) + 1 
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Πi 
Yi 

yi1 . . . yik . . . yici Row Totals 
πi1 

. . . 
πij 

. . . 
πiqi 

n(yi1|πi1) . . . n(yik |πi1 ) . . . n(yici |πi1) 
. . . 

n(yi1|πij ) . . . n(yik |πij ) . . . n(yici |πij ) 
. . . 

n(yi1|πiqi ) . . . n(yik |πiqi ) . . . n(yici |πiqi ) 

n(πi1 ) 
. . . 

n(πij ) 
. . . 

n(πiqi ) 

Table 4.1. Contingency table collecting the frequencies of cases (Yi = yik , Πi = πij ). 

with a local precision αij on θij which is increased by the frequency of parents ob
served in the configuration πij . 

Example 10 (continued). Data in the contingency Table 4.2 are extracted from the British 
General Election Panel Survey (April 1992). The frequencies are displayed according 
to Sex (Y2: 1=male and 2=female), Social Class (Y3: 1=low, 2=middle and 3=high), and 
the class variable Voting Intention (Y1: 1=Conservative, 2=Labour, 3=Liberal Democrat 
and 4=Other). The task is to classify the voters into four mutually exclusive classes of 
voting intentions on the basis of their attributes (Sex and Social Class). For this pur
pose, we can therefore define a Naive Bayesian Classifier similar to the one displayed 
in Figure 4.7 and estimate the conditional probability distributions associated to its de-
pendency. 

Y2 Y3 
Y1 

1 2 3 4 
1 1 

2 
3 

2 1 
2 
3 

28 8 7 0 
153 114 53 14 

20 31 17 1 
1 1 0 1 

165 86 54 6 
30 57 18 4 

Table 4.2. Data from the British General Election Panel Survey. Voting Intention (Y1), Sex (Y2), 
Social Class (Y3). 

Let θ1 = (θ11, . . . , θ14) be the parameter vector associated to the marginal distri
bution of Y1, and let θ2j = (θ2j1, θ2j2) and θ3j = (θ3j1, θ3j2, θ3j3) be the parameter 
vectors associated to the conditional distributions of Y2|y1j and Y3|y1j , j = 1, . . . , 4. A 
global prior precision α = 12 and the assumption of uniform prior probabilities for y1k, 
y2k |y1j and y3k |y1j induce a prior distribution D(3, 3, 3, 3) for the parameter θ1, on let
ting α1k = 12/4, prior distributions D(1.5, 1.5) for θ2j , on letting α2jk = 12/(4 × 2) 
and D(1, 1, 1) for the parameters θ3j , on letting α3jk = 12/(4 × 3). The frequencies 
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in Table 4.2 are used to update the hyper-parameters, so that after the updating, the 
posterior distributions of the parameters are: 

Y1 

1 2 3 4 
0.45 0.34 0.17 0.04

� 

Y3Y1 
1 2 3 

1 0.07 0.80 0.13 
2 0.03 0.67 0.30 
3 0.05 0.71 0.24 
4 0.07 0.72 0.21 

Y2Y1 
1 2 

1 0.51 0.49 
2 0.52 0.48 
3 0.52 0.48 
4 0.57 0.43 

Fig.4.9. The BBN induced by the data in Table 4.2. 

θ1|I1 ∼ D(400, 300, 152, 29) 
θ21|I1 ∼ D(202.5, 197.5) θ32|I1 ∼ D(30, 319, 51) 
θ22|I1 ∼ D(154.5, 145.5) θ32|I1 ∼ D(10, 201, 89) 
θ23|I1 ∼ D(78.5, 73.5) θ33|I1 ∼ D(8, 108, 36) 
θ24|I1 ∼ D(16.5, 12.5) θ34|I1 ∼ D(2, 21, 6) 

from which the probabilities of y1k|I1, y2k|y1j , I1 and y3k |y1j , I1 are computed as pos
terior expectations, and are reported in Figure 4.9. It is worth noting that the so defined 
BBN, when coupled with the classification procedure defined in Example 10, turns 
out to be a complete classification system: we can train the network with the data us
ing the procedure just described and then classify future cases using the algorithm de-
scribed in Example 10. Using the same procedure, we can calculate the distributions of 
Y1|y2j , y3k , I1 as shown in Table 4.3, given a set of attribute values. We then discover 
that the fundamental attribute for classification turns out to be the Social Class (Y3): 
high and middle class intend to vote for the Conservative party, while the lower social 
class has a clear preference for the Labour party. 

Model Selection Suppose now that the graphical model M has to be induced from 
the data. As in Section 4.4.1, let M = {M0,M1, . . . ,Mm} be the set of models that 
are believed, a priori, to contain the true model of dependence among the variables 
in Y . For instance, let Y = {Y1, Y2, Y3} and suppose that Y1, Y2 are known to be 
marginally independent, and that they can be both parents of Y3, but Y3 cannot be 
parent of Y1, Y2. These assumptions limit the set of possible models to be explored 
to M = {M0,M1, M2,M12} which are given in Figure 4.10. 
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Y2 Y3 
P (Y1|y2j , y3k , I1) Classify as 
1 2 3 4 

1 1 0.59 0.20 0.16 0.05 
1 2 0.49 0.31 0.17 0.03 
1 3 0.28 0.49 0.20 0.03 
2 1 0.61 0.20 0.16 0.03 
2 2 0.50 0.31 0.16 0.03 
2 3 0.28 0.49 0.20 0.03 

1 
1 
2 
1 
1 
2 

Table 4.3. Classification of data in Table 4.2 using the BBN in Figure 4.9. 

Each model in M is assigned a prior probability p(Mj |I0). Let θ(j) be the param
eter vector associated to the conditional dependencies specified by Mj . The sample 
information is used to compute the posterior probabilities p(Mj |I1) from which the 
most probable model in M can be selected. Recall from Section 4.4.1 that, by Bayes’ 
Theorem, we have 

p(Mj |I1) ∝ p(Mj |I0)p(y|Mj ) 

where p(y|Mj ) is the marginal likelihood of Mj . In order to select the most probable 
model, it is therefore sufficient to compute the marginal likelihood p(y|Mj ) which is 

p(y|Mj ) = p(θ(j)|Mj )p(y|θ(j))dθ(j) (4.18) 

where p(θ(j)|Mj ) is the prior density of θ(j) and p(y|θ(j)) is the likelihood function, 
when the model of dependence assumed is Mj . 

It is shown in [7] that (4.18) has a closed form solution when: 

1. The sample is complete, i.e. there are not cases reported as unknown; 
2. The cases are independent, given the parameter vector θ(j) associated to Mj ; 
3.	 The prior distribution of the parameters is conjugate to the sampling model p(y|θ(j)), 

that is θ(j) ∼ D(αij1, . . . , αijci ) and the parameters are locally and globally inij 
dependent. 

Under these assumptions, the marginal likelihood of Mj is: 

p(y|Mj ) = 
I 

i=1 

qi 

j=1 

Γ (αij )

Γ (αij + n(πij ))


ci 

k=1 

Γ (αijk + n(yik |πij )) (4.19)
Γ (αijk) 

where Γ (·) is the Gamma function [30]. When the database is complete, (4.19) can be 
efficiently computed using the hyper-parameters αijk + n(yik |πij ) and the precision 
αij + n(πij ) of the posterior distributions of θij . 

Example 11 (Model Discrimination). 
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Y1 Y
�
2 Y1 Y

�
2 

Y3 Y3 

M0 M1 

Y1 Y2 
Y1 Y2 

�� 
� � 

� �� 
� 

Y3 
Y3 

M2 
M12 

Fig.4.10. A set of possible models. 

Suppose we have two categorical variables Y1 and Y2, and a random sample of n 
cases. Both Y1 and Y2 are binary variables, and it is known that Y1 cannot be parent of 
Y2. This assumption leaves us with two possible models to be explored: 

Model M0: specifies that the two variables are independent and, conditional on M0, 
we can parameterize p(y11|θ(0)) = θ11 and p(y21|θ(0)) = θ21 where θ(0) is the 
parameter vector associated to M0. 

Model M1: specifies that Y2 is a parent of Y1, so that we can define p(y21|θ(1)) = θ21 

and p(y1|y2j , θ
(1)) = θ1j1. 

We assume that, given M0, θ2 = (θ21, θ22) ∼ D(2, 2) and θ1 = (θ11, θ12) ∼ D(2, 2), 
and they are independent. Given M1, we assume that θ1j = (θ1j1, θ1j2) ∼ D(1, 1), and 
they are independent. Thus, a priori, the marginal probabilities of y2j , y1k and y1k |y2j 

are all uniform and are based on a global prior precision α=4. Suppose we collect a 
random sample, and we report the summary statistics in Table 4.4. 

With complete data, the marginal likelihood under models M0 and M1 are found 
by applying Equation (4.19) and are: 

�2 
p(y|M0) = j=1 

Γ (4)Γ (2 + n(y2j )) �2 Γ (4)Γ (2 + n(y1k )) ;
Γ (4 + n)Γ (2) k=1 Γ (4 + n)Γ (2) �2 

p(y|M1) = j=1 
Γ (4)Γ (2 + n(y2j )) �2 Γ (2)Γ (1 + n(y1k |y2j )) 

Γ (4 + n)Γ (2) k=1 Γ (2 + n(y2j ))Γ (1) 
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Y2 
Y1 

1 2 Total 
1 
2 

n(y11|y21) n(y12|y21) n(y21) 
n(y11|y22) n(y12|y22) n(y22) 

Total n(y11) n(y12) n 

Table 4.4. Contingency table. 

and the model choice is based on the value of the ratio 

p(M0|I0)p(y|M0) 
r = 

p(M1|I0)p(y|M1) 
, 

from which the following decision rule is derived: if r < 1, model M1 is chosen; if 
r > 1 model M0 is chosen; and if r = 1 then the two models are equivalent. 

Unfortunately, as the number of variables increases, the evaluation of all possible mod
els becomes infeasible, and heuristic methods have to be used to limit the search process 
to a subset of models. The most common heuristic search limits its attention to the sub-
set of models that are consistent with a partial ordering among the variables: Yi � Yj 

if Yi cannot be parent of Yj . Furthermore, the fact that (4.19) is a product of terms that 
measure the evidence of each parents-child dependence can be exploited to develop 
search algorithms that work locally. This heuristic method was originally proposed by 
Cooper and Herskovitz [7]: they describe an algorithm — the K2 algorithm — which 
uses this heuristic to fully exploit the decomposability of (4.19). Denote the local con
tribution of a node Yi and its parents Πi to the overall joint probability p(y|Mj ) by 

g(Yi,Πi) = 
qi 

j=1 

Γ (αij ) 
Γ (αij + n(πij )) 

ci 

k=1 

Γ (αijk + n(xik|πij )) 
. (4.20)

Γ (αijk) 

For each node Yi, the algorithm proceeds by adding a parent at a time and by computing 
g(Yi,Πi). The set Πi is expanded to include the parent node that gives the largest 
contribution to g(Yi,Πi), and stops if the probability does not increase any longer. 
In the next example we use synthetic data to show the algorithm at work in a simple 
application. 

Example 12 (Model Search). Let Y = {Y1, Y2, Y3}, where Yi are binary variables, and 
suppose that Y3 � Y2 � Y1. The order assumed implies that Y3 cannot be parent of 
Y2, Y1 and Y2 cannot be parent of Y1. Thus, the node Y3 can have Y1, Y2 as parents, and 
Y2 can have Y1 as parents. These are the dependencies that we are exploring. Suppose 
further that all models consistent with this ordering have the same prior probability, and 
that the parameterization induced by each of these models is based on a global precision 
α = 6 which is then distributed uniformly across the parameters. Data collected are 
reported in Table 4.5. 

The algorithm starts by exploring the dependencies of Y3 as child node, and results 
are 
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Y1 Y2 
Y3 

1 2 
1 1 

2 
2 1 

2 

2 10 
5 3 
6 3 

10 2 

Table 4.5. An artificial sample. 

Π3 = ∅ log g(Y3,Π3) = −29.212 
Π3 = Y1 log g(Y3,Π3) = −27.055 
Π3 = Y2 log g(Y3,Π3) = −27.716 

so that the node Y1 is selected as parent of Y3. Next, both nodes Y1, Y2 are linked to Y3 

and log g(Y3, (Y1, Y2)) = −26.814. Since this value is larger than -27.055, this model 
of local dependence is selected. Then, the node Y2 is chosen as child node, and the 
dependence from Y1 is explored: 

Π2 = ∅ log g(Y2,Π2) = −29.474 
Π2 = Y1 log g(Y2,Π2) = − 30.058 

and since the model with Y2 independent of Y1 gives the largest contribution, the model 
selected is Y1, Y2 independent, both parents of Y3. 

4.6. Conclusion 

In the description of learning BBNs from data, we have made the assumption that the 
sample is complete, that is there are no cases reported as unknown. When the sample is 
incomplete, each missing datum can be replaced by any value of the associated variable. 
Therefore, an incomplete sample induces a set of possible databases given by the com
bination of all possible values for each missing datum. Exact Bayesian analysis requires 
the computation of the posterior distribution of the parameters θ as a mixture of the pos
terior distributions that can be obtained from all these possible databases. Clearly, this 
approach becomes infeasible as the proportion of missing data increases and we must 
resort to approximate methods. Popular approaches use either asymptotic approxima
tions based on the use of the ML estimates or GML estimates, that can be computed 
using iterative methods as the EM algorithm [8], or stochastic approximations as Gs 
(see [17] for a review.) The Bound and Collapse method by [26] provides an efficient 
deterministic algorithm to approximate the posterior distribution of incomplete samples 
which can be further used for model selection [25]. This method is implemented in the 
computer program Bayesian Knowledge Discoverer (BKD). 

In this chapter, we have limited our attention to BBNs with discrete variables. Meth
ods for learning and reasoning with BBNs with continuous, or mixed variables can be 
found in [22] and a recent review is reported in [5]. 
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