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Abstract

Bayesian networks are emerging into the genomic arena as a general modeling tool able to unravel the
cellular mechanism, to identify genotypes that confer susceptibility to disease, and to lead to diagnostic
models. This chapter reviews the foundations of Bayesian networks and shows their application to the
analysis of various types of genomic data, from genomic markers to gene expression data. The examples
will highlight the potential of this methodology but also the current limitations and we will describe new
research directions that hold the promise to make Bayesian networks a fundamental tool for genome data
analysis.

*Department of Biostatistics, Boston University School of Public Health, 715 Albany Street, Boston MA 02118. Email: se-
bas@bu.edu

tSoftware Engineering Department, University of Granada, Daniel Saucedo Aranda, Granada, 18071 Spain. Email: mabad@ugr.es

tChildren’s Hospital Informatics Program and Harvard Partners Center for Genetics and Genomics, Harvard Medical School, HMS
New Research Building, 77 Pasteur Avenue, Suite 255, Boston, MA 02115. Email: naanomi@harvard.edu

1



Contents

1 Introduction 3
2 Fundamentals of Bayesian Networks 4
2.1 Representationand Reasoning . . . . . . . . . . . e 4
2.2 Learning Bayesian NetworksfromData . . . . . ... .. ... ... ... .. ....... 7
221 ScoringMetrics . . . . . . .. 8
222 ModelSearch . . . . . . . .. 13
2.2.3 Validation . . . . . .. e e e 14
3 Genomic Applications of Bayesian Networks 15
3.1 Networks of GeneticMarkers . . . . . . . . . . ... 15
3.2 Gene Expression Networks . . . . . . . . . L 17
3.3 InSilico Integrative GeEnomics . . . . . . . . . . e 19
4 Advanced Topics 19
4.1 Bayesian Networks and Classification . . . . . .. .. .. ... ... ... ... . .... 19
4.1.1 Classification . . . . . . . . . 20
4.1.2 Molecular Classification . . . . . ... .. ... .. . . . e 21
4.2 Generalized GammaNetworks . . . . . . . ... L 21
4.2.1 Learningand Representation . . . . . . ... ... o 22
4.2.2 AnExample . .. .. 25
4.3 Bayesian Networks and Temporal Dependency . . . . . . . . . . .. ... ... ...... 27
5 Research Directions 29



1 Introduction

One of the most striking characteristics of today’s biomedical research practice is the availability of genomic-
scale information. This situation has been created by the simultaneous but not unrelated development of
“genome-wide” technologies, mostly rooted in the Human Genome Project: fast sequencing techniques,
high-density genotype maps, DNA and protein microarrays. Sequencing and genotyping techniques have
evolved into powerful tools to identify genetic variations across individuals responsible for predispositions to
some disease, response to therapies, and other observable characters known as phenotypes. Single-nucleotide
polymorphisms (SNPs) —a single base variation across the individuals of a population— are considered
the most promising natural device to uncover the genetic basis of common diseases. By providing a high-
resolution map of the genome they allow researchers to associate variations in a particular genomic region to
observable traits [15, 52]. Commercially available technology, such as the Affymetrix GeneChip Mapping
10K Array and Assay Set (http://affymetrix.com), is able to simultaneously genotype 10,000 SNPs in an
individual. Other technologies are able to interrogate the genomic structure of a cell on a genome-wide
scale: CGH microarrays are able to provide genome-wide identification of chromosomal imbalances —such
as deletions and amplifications— that are common rearrangements in most tumors [6]. These rearrangements
identify different tumor types or stages and this technology allows us to dive into the mutagenic structure of
tumor tissues.

Despite their differences —large scale genotyping interrogates the normal DNA of an individual, while
CGH microarrays are specifically designed to study mutagenic tissues like tumors— these two technologies
focus on the identification of structural genomic information, that is, information about the DNA sequence of
a cell. The functional counterparts of these genomic platforms, on the other hand, are designed to quantify
the expression of the genes encoded by the DNA of a cell, as amount of RNA produced by each single
gene. cDNA and oligonucleotide microarrays [61, 81, 83] enable investigators to simultaneously measure the
expression of thousands of genes and hold the promise to cast new light onto the regulatory mechanisms of
the genome [51]. The ability they offer to observe the genome in action has opened the possibility of profiling
gene behaviors, studying interactions among genes, and discovering new classes of diseases on the basis of
their genomic profile alone. The rising field of proteomics takes this study one step forward to proteins —
the final product of gene expression [71]— and, using mass spectrometry technology, investigators can now
measure in parallel the entire protein complement in a given cell, tissue or organism [1].

All these technologies come to join, today, long-term cohort studies, like the Nurses’ Health Study
(http://www.channing.harvard.edu/nhs) and the Framingham Heart Study (http://www.framingham.com/heart)
that have been collecting detailed “phenome-wide” information about hundred of thousands individuals over
several decades. Although the individual contribution of each technology has been already invaluable, the
potential of their integration is even greater, but their ability to deliver on their promise of understanding
the fundamental rules of life and diseases rests on our ability to integrate this genomic information with
large-scale phenotypic data [15]. The integration of information about genotypes, RNA expression, proteins
and phenotypes into a coherent landscape will lead not only to the discovery of clinical phenomena not ob-
servable at each individual level but also to a better understanding of the coding and regulatory mechanisms
underpinning the expression of genes [27].

The main challenge of this endeavor is the identification of a common formalism able to model this mas-
sive amount of data. Bayesian networks (also known as directed graphical models) are a knowledge represen-
tation formalism born at the confluence of artificial intelligence and statistics that offer a powerful framework
to model these different data sources. Bayesian networks have been already applied, by us and others, to
the analysis of different types of genomic data —from gene expression microarrays [28, 31, 70, 92, 93] to
protein-protein interactions [46] and genotype data [7, 90] — and their modular nature makes them easily ex-
tensible to the task of modeling these different types of data. However, the application of Bayesian networks
to genomics requires the methodological development of new statistical and computational capabilities able
to capture the complexity of genomic information.
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Figure 1:A network describing the impact of a genetic marker (node M) and an environmental factor (node
E) on a phenotypic character (node P). Each node in the network is associated with a probability table that
describes the conditional distribution of the node, given its parents.

This chapter will first describe the current state of the art about learning Bayesian networks from data. We
will show the potential benefit of Bayesian networks as model and reasoning tool through several examples.
The examples will also highlight the limitations of the current methodology and we will describe new research
directions that hold the promise to make Bayesian networks a fundamental tool for genomic data analysis.

2 Fundamentals of Bayesian Networks

Bayesian networks are a representation formalism at the cutting edge of knowledge discovery and data mining
[43, 63, 64]. In this section, we will review the formalism of Bayesian networks and the process of learning
them from databases.

2.1 Representation and Reasoning

A Bayesian network has two components: a directed acyclic graph and a probability distribution. Nodes
in the directed acyclic graph represent stochastic variables and arcs represent directed dependencies among
variables that are quantified by conditional probability distributions.

As an example, consider the simple scenario in which a genetic marker together with an environmental
condition create a phenotypic character. We describe the marker in the genetic code, the environmental
condition, and the phenotypic character with three variables M, E, and P, each having two states “True” and
“False”. The Bayesian network in Figure 1 describes the dependency of the three variables with a directed
acyclic graph, in which the two arcs pointing to the node P represent the joint action of the genetic marker
and the environmental condition. Also, the absence of any directed arc between the genetic marker and the
environmental condition describes thearginal independencef the two variables that become dependent
when we condition on the phenotype. Following the direction of the arrows, we call the nodhkild af
M and E, which become itparents The Bayesian network in Figure 1 let us decompose the overall joint
probability distribution of the three variables that would consi€’ef1 = 7 parameters into three probability
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True | False

0.1 0.9
Y, Y,
Y, True | False Y, True | False
False 0.0 1.0 False 0.0 1.0
True 0.5 0.5 True 0.5 0.5

p(Y, =True|Y, =True)=0.5
p(Y, =True|Y, =False) =0.026
p(Y, =True) =0.05

Figure 2:A network encoding the conditional independencg, ot given the common paret. The panel
in the middle shows that the distribution3f changes witly; and hence the two variables are conditionally
dependent.

distributions, one conditional distribution for the variable P given the parents, and two marginal distributions
for the two parent variables M and E. These probabilities are specifidditby + 4 = 6 parameters. The
decomposition is one of the key factors to provide both a verbal and a human understandable description of
the system and to efficiently store and handle this distribution, which grows exponentially with the number of
variables in the domain. The second key factor is the usmdlitional independendaetween the network
variables to break down their overall distribution into connected modules.

Suppose we have three random varialifesYs, Y;. ThenY; andY; are independent giveks; if the
conditional distribution of;, givenYs, Y3 is only a function ofYs. Formally:

P(y1ly2, y3) = p(y1lys)

wherep(y|x) denotes the conditional probability/densityof given X = x. We use capital letters to denote
random variables, and small letters to denote their values. We also use the nbtdtioYs to denote the
conditional independence &f andY> givenYs.

Conditional and marginal independence are substantially different concepts. For example two variables
can be marginally independent, but they may be dependent when we condition on a third variable. The
directed acyclic graph in Figure 1 shows this property: the two parent variables are marginally independent,
but they become dependent when we condition on their common child. A well known consequence of this fact
is the Simpson'’s paradox [105] and a typical application in genetics is the dependency structure of genotypes
among members of the same family: the genotypes of two parents are independent, assuming random mating,
but they become dependent once the genotype of their common child is known.

Conversely, two variables that are marginally dependent may be made conditionally independent by in-
troducing a third variable. This situation is represented by the directed acyclic graph in Figure 2, which
shows two children nodeg{ andY:) with a common parents. In this case, the two children nodes are
independent, given the common parent, but they may become dependent when we marginalize the common
parent out. Suppose, for example, the three variables represent the presence/absence of an X-linked genetic
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Figure 3: A Bayesian network with seven variables and some of the Markov properties represented by its
directed acyclic graph. The panel on the left describes the local Markov property encoded by a directed
acyclic graph and lists the three Markov properties that are represented by the graph in the middle. The
panel on the right describes the global Markov property and lists three of the seven global Markov properties
represented by the graph in the middle. The vector in bold denotes the set of variables represented by the
nodes in the graph.

marker in the mother genotyp&3) and the children genotypé&{ andYs). The marginal distribution o¥;
represents the prevalence of the marker in the population, and the conditional probabilities associated with
the nodesy; andY; represent the probability that each child has the marker, given the maternal genotype.
Then it is easy to compute the conditional probability that one of the two children has the marker, given that
only the genotype of the other child is known. Because the probability changes according to the value

of Y3, the two variables are dependent. The seminal papers by Dawid [19, 20] summarize many important
properties and alternative definitions of conditional independence.

The overall list of marginal and conditional independencies represented by the directed acyclic graph is
summarized by the local and global Markov properties [57] that are exemplified in Figure 3 using a network
of seven variables. Thiecal Markov propertystates that each node is independent of its non descendant
given the parent nodes and leads to a direct factorization of the joint distribution of the network variables into
the product of the conditional distribution of each variablegiven its parenta(y;). Therefore, the joint
probability (or density) of the network variables can be written as:

DYty oo Yo) = Hp(yilpa(yi)) 1)

In this equationpa(y; ) denotes a set of values Biu(Y;). This property is the core of many search algorithms

for learning Bayesian networks from data. With this decomposition, the overall distribution is broken into
modules that can be interrelated, and the network summarizes all significant dependencies without informa-
tion disintegration. Suppose, for example, the variable in the network in Figure 3 are all categorical. Then
the joint probabilityp(ys, - . . , y7) can be written as the product of seven conditional distributions:

P(y1)p(y2)p(ysly1, y2)p(ya)p(ys|ys)p(ye|ys, ya)p(y7|ys, ve)-

Theglobal Markov propertyon the other hand, summarizes all conditional independencies embedded by the
directed acyclic graph by identifying the Markov Blanket of each node. This property is the foundation of
many algorithms for probabilistic reasoning with Bayesian networks that allow the investigation of undirected
relationships between the variables, and their use for making prediction and explanation. In the network



in Figure 3, for example, we can compute the probability distribution of the varighlayiven that the
variableY; is observed to take a particular value (prediction) or, vice versa, we can compute the conditional
distribution of Y7 given the values of some other variables in the network (explanation). In this way, a
Bayesian network becomes a complete simulation system able to forecast the value of unobserved variables
under hypothetical conditions and, conversely, able to find the most probable set of initial conditions leading
to observed situation. Exact algorithms exist to perform this inference when the network variables are all
discrete, all continuous and modelled with Gaussian distributions, or the network topology is constrained to
particular structures [9, 58, 69].

For general network topologies and non standard distributions, we need to resort to stochastic simulation
[12]. Among the several stochastic simulation methods currently available, Gibbs sampling [36, 103] is
particularly appropriate for Bayesian network reasoning because of its ability to leverage on the graphical
decomposition of joint multivariate distributions to improve computational efficiency. Gibbs sampling is also
useful for probabilistic reasoning in Gaussian networks, as it avoids computations with joint multivariate
distributions. Gibbs sampling is a Markov Chain Monte Carlo method that generates a sample from the joint
distribution of the nodes in the network. The procedure works by generating an ergodic Markov chain

Y10 Y11 Y12

Yvo Yu1 Yov2

that, under regularity conditions, converges to a stationary distribution. At each step of the chain, the algo-
rithm generateg;;, from the conditional distribution o¥; given all current values of the other nodes. To
derive the marginal distribution of each node, the initial burns-in is removed, and the values simulated for
each node are a sample generated from the marginal distribution. When one or more nodes in the networks are
observed, they are fixed in the simulation so that the sample for each node is from the conditional distribution
of the node given the observed nodes in the network.

Gibbs sampling in directed graphical models exploits the Global Markov property, so that to simulate
from the conditional distribution of one nod¢é given the current values of the other nodes, the algorithm
needs to simulate from the conditional probability/density

p(yily\yi) o< p(yilpa(ys) [ [ pleyi)nlpale(yi)n))
h
wherey denotes a set of values of all network variables(y;) and c(y;) are values of the parents and
children ofY;, pa(c(y;)s) are values of the parents of théh child of Y;, and the symbol denotes the set
difference.

2.2 Learning Bayesian Networks from Data

Learning a Bayesian network from data consists of the induction of its two different components: 1) The
graphical structure of conditional dependencie®del selection 2) The conditional distributions quanti-

fying the dependency structurparameter estimation While the process of parameter estimation follows

quite standard statistical techniques (see [73]), the automatic identification of the graphical model best fitting
the data is a more challenging task. This automatic identification process requires two components: a scoring
metric to select the best model and a search strategy to explore the space of possible, alternative models. This
section will describe these two components — model selection and model search — and will also outline
some methods to validate a graphical model once it has been induced from a data set.



2.2.1 Scoring Metrics

We describe the traditional Bayesian approach to model selection that solves the problem as hypothesis
testing. Other approaches based on independence tests or variants of the Bayesian metric like the minimum
description length (MDL) score or the Bayesian information criterion (BIC) are described in [57, 98, 105]. We
suppose to have a sét = { My, M, ..., M, } of Bayesian networks, each network describing an hypothesis

on the dependency structure of the random variables.., Y,. Our task is to choose one network after
observing a sample of dafad = {y1x, ..., yux }, fOr k = 1,...,n. By Bayes’ theorem, the dafa are used to

revise the prior probability(1/};,) of each model into the posterior probability, which is calculated as

p(My|D) o< p(Mp)p(D|My)

and the Bayesian solution consists of choosing the network with maximum posterior probability. The quantity
p(D|My,) is called themarginal likelihoodand is computed by averaging @it from the likelihood function

p(D|0r), where©y, is the vector parameterizing the distribution}qf, ..., Y;,, conditional on}M;,. Note that,

in a Bayesian setting);, is regarded as a random vector, with a prior deng(ty,) that encodes any prior
knowledge about the parameters of the matig). The likelihood function, on the other hand, encodes

the knowledge about the mechanism underlying the data generation. In our framework, the data generation
mechanism is represented by a network of dependencies and the parameters are usually a measure of the
strength of these dependencies. By averaging out the parameters, the marginal likelihood provides an overall
measure of the data generation mechanism that is independent of the values of the parameters. Formally, the
marginal likelihood is the solution of the integral

p(DIM,) = / p(D|61)p(6n)d6).

The computation of the marginal likelihood requires the specification of a parameterization of each model
Mj, that is used to compute the likelihood functip(D|6}, ), and the elicitation of a prior distribution f@;,.

The local Markov properties encoded by the netwdfk imply that the joint density/probability of a cage

in the data set can be written as

Pk, - yor|0n) = [ [ pirlpa(yi)r, On). (2)
Here,y1x, ..., yur 1S the set of valuesconfiguratior) of the variables for théth case, angha(y;) is the
configuration of the parents df; in casek. By assuming exchangeability of the data, that is, cases are
independent given the model parameters, the overall likelihood is then given by the product

p(D16r) = [ [ p(yirlpa(yi)r, On).
ik
Computational efficiency is gained by using priors €y that obey the Directed Hyper-Markov law [21].
Under this assumption, the prior denspyd;) admits the same factorization of the likelihood function,
namelyp(6,) = [1, p(0r:), whered,,; is the subset of parameters used to describe the dependehcypmof
its parents. This parallel factorization of the likelihood function and the prior density allows us to write

p(O130) =TT [ olpalus)s. 60.0p(61s)d0hs = [Tp(D}a1)
ik 2

wherep(D|My;) = 1, [ p(Yir|pa(yi)k, Oni)p(0ri)dOn;. By further assuming decomposable network prior
probabilities that factorize ag(My,) = [[, p(Mp;) [44], the posterior probability of a modél/;, is the
product:



p(Mp|D) = HP(MM|D)-

Herep(M,,;|D) is the posterior probability weighting the dependencypbn the set of parents specified

by the modelM,;,. Decomposable network prior probabilities are encoded by exploiting the modularity of
a Bayesian network, and are based on the assumption that the prior probability of a local st¥jgtise
independent of the other local dependendigs for j # i. By settingp(M4;) = (g + 1)~'/v, whereg + 1

is the cardinality of the model space am@ the cardinality of the set of variables, there follows that uniform
priors are also decomposable.

An important consequence of the likelihood modularity is that, in the comparison of models that differ for
the parent structure of a varialdig, only the local marginal likelihood matters. Therefore, the comparison of
two local network structures that specify different parents for the varigtdan be done by simply evaluating
the product of the locaBayes factorBF,, = p(D|My;)/p(D|My;), and the prior oddg(M},)/p(My), to
compute the posterior odds of one model versus the other:

p(Mpi|D) [p(Myi|D).

The posterior odds provide an intuitive and widespread measure of fitness. Another important consequence
of the likelihood modularity is that, when the models are a priori equally likely, we can learn a model locally
by maximizing the marginal likelihood node by node.

When there are no missing data, the marginal likelihpGP| ;) can be calculated in closed form
under the assumptions that all variables are discrete, or all variables follow Gaussian distributions and the
dependencies between children and parents are linear. These two cases are described in the next examples.
We conclude by noting that the calculation of the marginal likelihood of the data is the essential component
for the calculation of the Bayesian estimate of the parantgtewhich is given by the expected value of the
posterior distribution:

p(D|bn)p p(D|0n:)p(On:)
Op|D) = ———— =
p(0nlD) = D\Mh H (D Mpy)
Example 2.1 (Discrete Variable Networks) Suppose the variablés,, ..., Y, are all discrete, and denote

by ¢; the number of categories &f. The dependency of each variabfgon its parents is represented by a
set ofmultinomial distributionghat describe the conditional distribution Bf on the configurationy of the
parent variable®a(Y;). This representation leads to writing the likelihood function as:

p(DI6x) = ] 0:2*
ijk
where the parameté;;, denotes the conditional probabilityyx|pa(y;);); nijx is the sample frequency of
(yik,pa(y;);j), andn;; = >, n;jy is the marginal frequency gfa(y;);. Figure 4 shows an example of the
notation for a network with three variables. With the data in this example, the likelihood function is written
as:
{01,07,3{05 932}{93119;,12 X 0§219g22 x 9%310&32 X 9%419:%42}“

The first two terms in the products are the contributions of ndfeandY; to the likelihood, while the last
product is the contribution of the nodg, with terms corresponding to the four conditional distributions of
Y3 given each of the four parent configurations.

The hyper Dirichlet distributionwith parametersy; ;. is the conjugate Hyper Markov law [21] and it

is defined by a density function proportional to the prod]]j;g,C f‘]i,j’“_l. This distribution encodes the

assumption that the parametéts and¢,/;» are independent faf # ¢ andj # j'. These assumptions are



2 Database of 7 cases

True | False True | False Casek |Y, Y, Yy
0, 0, 0y O 1 True | True | False
2 True | False | True
3 False | False | True
4 False | True True
5 True | False | True
6 True | True True
7 False | False | False
v, ﬂ
pa(y;) | Y, Y True | Fake
pa(yy), | Fale Fale | 0y, 0,1, Ys
pa(yy), | Fake True |6, |6, pay) |1 Y True | Fabe
pa(yy); | True False | 655 | 653, payy, | Fale Fale |1 !
pa(yy), | Tue True | Oy, |0y, paQyy; | Fake True |1 2
Parameters pe, | e T 2 -
payy, |Tue True |1 |1

Frequencies

Figure 4: A simple Bayesian network describing the dependendy; @n Y; and Y; that are marginally
independent. The table on the left describes the paraméferSj = 1,...,4 andk = 1, 2) used to define
the conditional distributions ofs = ysx|pa(ys),;, assuming all variables are binary. The two tables on the
right describe a simple database of seven cases, and the frequeggies he full joint distribution is defined
by the parameter8s;;, and the parameter®;;, andd.;, that specify the marginal distributions &f andYs.
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known agglobal and local parameter independer[®&], and are valid only under the assumption the hyper-
parametersy; ;;, satisfy the consistency rqu a;; = o for all i [40, 34]. Symmetric Dirichlet distributions
satisfy easily this constraint by setting;;, = a/(c;¢;) whereg; is the number of states of the parents/pf

One advantage of adopting symmetric hyper Dirichlet priors in model selection is that, if wec€irstant

for all models, then the comparison of posterior probabilities of different models is done conditionally on the
same quantityv. With these parameterization and choice of prior distributions, the marginal likelihood is
given by the equation

[(ovj I(ojr + gy
HP(D|MM) - H F(aig + 7)123) ];'[ | F(kaijk) :

whereI'(-) denotes the Gamma function, and the Bayesian estimate of the par@mpgterthe posterior
mean

Qijk + Nijk
E(0;;1|D) = —L 1%, 3
( Jk| ) aij + 1 3)
More details are in [73].
Example 2.2 (Linear Gaussian Networks)Suppose now that the variabl&s, . .., Y, are all continuous,
and the conditional distribution of each variablggiven its parentsPa(y;) = {Yi1, ..., Yy} follows a

Gaussian distributiorwith mean that is a linear function of the parent variables, and conditional variance
0? = 1/7;. The parameter; is called the precision. The dependency of each variable on its parents is
represented by the linear regression equation:

i = Bio + Z BijYij
J

that models the conditional mean bf given the parent valueg;;. Note that the regression equation is
additive (there are no interactions between the parent variables) to ensure that the model is graphical [57].
In this way, the dependency &f on a parent;; is equivalent to having the regression coefficigpt # 0.

Given a set of exchangeable observatitnshe likelihood function is:

p(D16n) = [ [(ri/(2m)™2 [ [ exp (=7 (yin — pir)?/2]
i k

wherep;;, denotes the value of the conditional meanypfin casek, and the vectof;,, denotes the set of
parameters;, 3;;. It is usually more convenient to use a matrix notation and we use thgp(i) + 1)
matrix X; to denote the matrix of regression coefficients, with row given by(1, yi1x, Yiok, - - - » Yip(i)k )
0; to denote the vector of parametéfso, i1, . . . ,@p(i))T associated witly; and, in this exampley; to
denote the vector of observatiofiss, - - ., i»)* . With this notation, the likelihood can be written in a more
compact form:

p(Dl6n) = [ [(r:/ (2m))"* exp [=7i(ys — X:8:)" (y: — X3:) /2]
There are several choices to model the prior distribution on the parametansl 3;. For example, the
conditional variance can be further parameterized as:
o; = V(Yi) = cou(Ys, Pa(y:))V (Pa(y)) ™" cov(Pa(y:), Y;)

whereV (Y;) is the marginal variance d&f;, V(Pa(y;)) is the variance-covariance matrix of the parent vari-
ables, an@ouv(Y;, Pa(y;)) (cov(Pa(y;),Y;)) is the row (column) vector of covariances betwéémnd each
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parentY;;. With this parameterization, the prior of is usually a hyper-Wishart distribution for the joint
variance-covariance matrix 8f, Pa(y;) [17]. The Wishart distribution is the multivariate generalization of
a Gamma distribution. An alternative approach is to work directly with the conditional variarice ¢
this case, we estimate the conditional variances of each set of parents-child dependency and then the joint
multivariate distribution that is needed for the reasoning algorithms is derived by multiplication. More details
are described for example in [105] and [33].

We focus on this second approach and again use the global parameter independence [97] to assign in-
dependent prior distributions to each set of parametgrs; that quantify the dependency of the variable
Y; on its parents. In each set, we use the standard hierarchical prior distribution that consists of a marginal
distribution for the precision parametgrand a conditional distribution for the parameter vegtgrgiven;.
The standard conjugate prior foyis aGamma distribution

1

_ i1—1 —7 /a2
Ti ~ Gamm&aﬂ 061'2) p(Tl) = ,77’-0 177
’ a?jlf(aﬂ) g
where
o Vio iy — 2
i1= oy Qg = ——.
2 l/iOO'?O

This is the traditional Gamma prior fot with hyper-parameters;, ando? that can be given the following
interpretation. The marginal expectationfs E(7;) = ai1a,2 = 1/02 and
1 1/1‘00'1-20

(1/7:) (a1 —Daga Vi —2

is the prior expectation of the population variance. Because theuatid) / (v;, —2) is similar to the estimate
of the variance in a sample of sizg, o2, is the prior population variance, basedigncases seen in the past.
Conditionally onr;, the prior density of the parameter vectiris supposed to be multivariate Gaussian:

Bilti ~ N(Bio, (Ti Rio) ")

wheregB;, = E(3;|7;). The matrix(; R;,) ! is the prior variance-covariance matrix @fl; and R;, is the
identity matrix so that the regression coefficients are a priori independent, conditionally ©he density
function of 3; is

(p(4)+1)/2 1/2
p(ﬁh) — T det(Rio) / 6*7'1’/Q(ﬁi*ﬁio)TRio(ﬁi*ﬁio)
v (277)(1’(0""”/2 ’

With this prior specifications, it can be shown that the marginal likelihg@ M},) can be written in product
form [, p(D| M), where each factor is given by the quantity:

1 det R T(vin/2) (vio02,)2)" o/
(2m)"/2 det R/ T(Vio/2) (Vinof, /2)Vin/?

and the parameters are specified by the next updating rules:

p(D|Mp;) =

Qiin = Vip/24+n/2

Vaion = (—=BLRinBin + Yl Yi + BLRioBio) /2 + 1/ viz
Vin, = Vipotn

Oin = 2/(Vinai2n)

Rin = Rio + X;TXl

Bin = R, (RioBio+ X ys)

12



The Bayesian estimates of the parameters are given by the posterior expectations:
E(Tily;) = dirneving, = /02, E(Bily:) = Bin,

and the estimate of? is v;,02, /(vin, — 2). More controversial is the use of improper prior distributions that
describe lack of prior knowledge about the network parameters by uniform distributions [66]. In this case,
we setp(3;, 7;) o 7; ¢, so thatv;,, = 2(1 — ¢) andg;, = 0. The updated hyper-parameters are:

Vin = Vitn

R;n = XiTXZ-

Bin = (XTX;)"'XTy; leastsquares estimate ®f

om = RSS;/vy,

RSS; = ylyi—yI Xy(XFX;)"*XTy; residual sum of squares

and the marginal likelihood of each local dependency is

1
(2m)(n—p(H-1)/2

1

p(D|Mp;) = det(XTX,)1/2"
i “Vi

D((n —p(i) — 2¢ +1)/2)(RSS, /2)~(n—p(i)=2c+1)/2
A very special case is= 1 that corresponds tg;, = 0. In this case, the local marginal likelihood simplifies

to
1

2m)—PO-1/2

1
det(XT X;)1/2°
The estimates of the parametersand3; become the traditional least squares estim&&s, /(v;,, — 2) and

Bin. This approach can be extended to model an unknown variance-covariance structure of the regression
parameters, using Normal-Wishart priors [33]

p(D|Mp;) = T((n— p(i) — 1)/2)(RSS;/2)~(—P(1)=1)/2

2.2.2 Model Search

The likelihood modularity allows local model selection and simplifies the complexity of model search. Still,

the space of the possible sets of parents for each variable grows exponentially with the number of candidate
parents and successful heuristic search procedures (both deterministic and stochastic) have been proposed
to render the task feasible [16, 55, 96, 108]. The aim of these heuristic search procedures is to impose
some restrictions on the search space to capitalize on the decomposability of the posterior probability of each
Bayesian networld/;,. One suggestion, put forward by [16], is to restrict the model search to a subset of all
possible networks that are consistent with an ordering relation the variablegY, ..., Y, }. This ordering
relation> is defined byY; > Y; if ¥; cannot be parent df;. In other words, rather than exploring networks

with arcs having all possible directions, this order limits the search to a subset of networks in which there is
only a subset of directed associations. At first glance, the requirement for an order among the variables could
appear to be a serious restriction on the applicability of this search strategy, and indeed this approach has been
criticized in the artificial intelligence community because it limits the automation of model search. From a
modeling point of view, specifying this order is equivalent to specifying the hypotheses that need to be tested,
and some careful screening of the variables in the data set may avoid the effort to explore a set of not sensible
models. For example, we have successfully applied this approach to model survey data [87, 89] and more
recently genotype data [90]. Recent results have shown that restricting the search space by imposing an order
among the variables yields a more regular space over the network structures [30].

In functional genomics, the determination of this order can be aided by the available information about
gene control interactions embedded into known pathways. When the variables represent gene products,
such as gene expression data, the order relationship can describe known regulatory mechanisms and it has
been exploited for example in [92] to restrict the set of possible dependency structures between genes. This
ordering operation can be largely automated by using some available programs, such as MAPPFinder [24]
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or GenMAPP [18], able to automatically map gene expression data to known pathways. For genes with
unknown function, one can use different orders with random restarts. Other search strategies based on genetic
algorithms [55], “ad hoc” stochastic methods [96] or Markov Chain Monte Carlo methods [30] can also be
used. An alternative approach to limit the search space is to define classes of equivalent directed graphical
models [13].

The order imposed on the variables defines a set of candidate parents for each Yargadeone way
to proceed is to implement an independent model selection for each variahiel then link together the
local models selected for each variable A further reduction is obtained using the greedy search strategy
deployed by th&<2 algorithm[16]. The K2 algorithm is a bottom-up strategy that starts by evaluating the
marginal likelihood of the model in whicl; has no parents. The next step is to evaluate the marginal
likelihood of each model with one parent only and if the maximum marginal likelihood of these models
is larger than the marginal likelihood of the independence model, the parent that increases the likelihood
most is accepted and the algorithm proceeds to evaluate models with two parents. If none of the models
has marginal likelihood that exceeds that of the independence model, the search stops. The K2 algorithm
is implemented in Bayesware Discoverer (http://www.bayesware.com), and the R-package Deal [4]. Greedy
search can be trapped in local maxima and induce spurious dependency and a variant of this search to limit
spurious dependency is stepwise regression [62]. However, there is evidence that the K2 algorithm performs
as well as other search algorithms [107].

2.2.3 Validation

The automation of model selection is not without problems and both diagnostic and predictive tools are
necessary to validate a multivariate dependency model extracted from data. There are two main approaches
to model validation: one addresses tlumdness of finf the network selected from data and the other assesses

the predictive accuracyf the network in some predictive/diagnostic tests.

The intuition underlying goodness of fit measures is to check the accuracy of the fitted model versus the
data. In regression models in which there is only one dependent variable, the goodness of fit is typically
based on some summary of the residuals that are defined by the difference between the observed data and
the data reproduced by the fitted model. Because a Bayesian network describes a multivariate dependency
model in which all nodes represent random variables, we develdpa#et residual$86] as follows. Given
the network induced from data, for each case the database we compute the values fitted for each vigde
given all the other values. Denote this fitted valueghyand note that, by the global Markov property, only
the configuration in the Markov blanket of the noHgis used to compute the fitted value. For categorical
variables, the fitted valug, is the most likely category df; given the configuration of its Markov blanket,
while for numerical variables the fitted valgg, can be either the expected valueYgf given the Markov
blanket, or the modal value. In both cases, the fitted values are computed by using one of the algorithms for
probabilistic reasoning described in Section 2. By repeating this procedure for each case in the database, we
compute fitted values for each variablg and then define the blanket residuals by

Tik = Yik — Yik

for numerical variables, and by

it = 0(Yik, Uik

for categorical variables, where the functiéfu, b) takes value) = 0 whena = b andd = 1 whena # b.

Lack of significant patterns in the residuals and approximate symmetry about O will provide evidence in

favor of a good fit for the variabl¥;, while anomalies in the blanket residuals can help to identify weaknesses

in the dependency structure that may be due to outliers or leverage points. Significance testing of the goodness
of fit can be based on the standardized residuals:
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Tik

V(yi)
where the varianc® (y;) is computed from the fitted values. Under the hypothesis that the network fits the
data well, we would expect to have approximately 95% of the standardized residuals within the limits [-2,2].
When the variabl€’; is categorical, the residuats; identify the error in reproducing the data and can be
summarized to compute the error rate for fit.

Because these residuals measure the difference between the observed and fitted values, anomalies in the
residuals can identify inadequate dependencies in the networks. However, residuals that are on average not
significantly different from 0 do not necessarily prove that the model is good. A better validation of the
network should be done on an independent test set to show that the model induced from one particular data
set isreproducibleand gives good predictions. Measures of the predictive accuracy can be the monitors based
on thelogarithmic scoring functiofi39]. The basic intuition is to measure the degree of surprise in predicting
that the variablé’; will take a valuey;;, in the hth case of an independent test set. The measure of surprise is
defined by the score

Ry, =

sin = — log p(yin| M B(yi)n)

whereM B(y;)y, is the configuration of the Markov blanket BF in the test casé, p(y;n|M B(y;)r) is the
predictive probability computed with the model induced from data, @pds the value ofY; in the hth
case of the test set. The scarg will be 0 when the model predictg;, with certainty, and increases as the
probability ofy;;, decreases. The scores can be summarized to deciakand global monitorsand to define
tests for predictive accuracy [17].

In the absence of an independent test set, standard cross validation techniques are typically used to assess
the predictive accuracy of one or more nodes [41]. In K-fold cross validation, the data are dividéd into
non-overlapping sets of approximately the same size. Fherl sets are used for retraining (or inducing) the
network from data that is then tested on the remaining set using monitors or other measures of the predictive
accuracy [42]. By repeating this procdsgimes, we derive independent measures of the predictive accuracy
of the network induced from data as well as measures of the robustness of the network to sampling variability.
Note that the predictive accuracy based on cross-validation is usually an over-optimistic measure, and several
authors have recently argued that cross-validation should be used with caution [5], particularly with small
sample sizes.

3 Genomic Applications of Bayesian Networks

Bayesian networks have been applied to the analysis of several gene products, including gene expression
measured with microarrays [28, 106] and proteins [46]. This section describes some applications of Bayesian
networks in genomics. In the first two sections we use Bayesian networks to model the complex structure
of gene-gene interactions in complex traits, using genetic markers and gene expression data measured with
microarrays. The last section shows an application of Bayesian networks to proteomics. In all applications,
the study design was @ase-contro[82] with subjects selected according to their disease status: cases are
subjects affected with the particular disease of interest, while controls are unaffected with the disease.

3.1 Networks of Genetic Markers

Many complex diseases are likely to be determined by the joint action of particular genotypes and their
interaction with environmental factors. Alzheimer disease is an example of a complex trait related to multiple
genes and there is evidence that several genes and the environment influence the risk of this disease [82].
Another example is diabetes mellitus, for which several studies have identified different genotypes that are
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Figure 5: A Bayesian network representing a complex trait given by the interaction of several genes and
clinical covariates.

associated with the disease [2]. In both examples, polymorphic loci of several genes have been found to be
associated with the disease.

It is well known that the majority of the DNA sequence is equal across all individuals except for a small
proportion of positions that have more than one foatfe(e). A piece of DNA that has more than one form,
each occurring with at least 1% frequency in the population, is calitégmorphicand when the piece is
a single base of the DNA, it is called a single nucleotide polymorphism (SNP). SNPs work as flags on a
high density map of the human genome and allow us to identify those genes whose polymorphisms may
be causative of the disease [52]. In case-control studies, the data available for this discovery process are
typically genotypes of case and control subjects at polymorphic loci, together with information about several
clinical covariates and environmental factors. The genotype can be coded as either the presence/absence of
the minor allele (the allele with smaller frequency in the population) in the two loci of the chromosome pair,
or as the complete allele pair that can be homozygous for the major allele, homozygous for the minor allele,
or heterozygous when the two alleles are different.

The discovery of complex gene-environment interactions that confer susceptibility to disease requires ad-
vanced multivariate modeling tools and a typical solution is to resort to logistic regression models to describe
the odds for the disease given a particular genotype. The advantages of logistic regression models are that
they can be used to assess whether the association between the risk for disease and a particular genotype is
confoundedy some external factor (such as population admixture [67]) and they can be used to test whether
an external factor or a particular genotype isedfiect modifieiof an association [47]. However, logistic re-
gression models pose three serious limitations: when the susceptibility to disease is caused by the interaction
among several genes, the number of parameters required to fit a logistic regression model increases at an
exponential rate; the genotypes are treated as covariates rather than random variables; logistic regression is
limited to examine the association between one phenotypic character at a time. To simultaneously overcome
these three limitations, we have recently proposed to use Bayesian networks to discover the genetic makeup
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that confers susceptibility to overt stroke in patients with sickle cell anemia.

The complications of sickle cell anemia are likely to be determined by the actions of genes that modify
the pathophysiology initiated by sickle hemoglobin. Overt stroke (CVA) occurs in about 10% of patients with
sickle cell anemia. To define the genetic basis of CVA in sickle cell anemia we examined the association of
SNPs in several candidate genes of different functional classes with the likelihood of CVA. In our study, we
considered 92 patients with a confirmed history of or incident complete non-hemorrhagic CVA, documented
by imaging studies and 453 controls (patients who did not have a stroke in five years follow up). We modeled
the genetic markers and their association with the CVA phenotype by Bayesian networks using the structural
learning approach described in Section 2.2. We validated the network of association induced from data
using cross-validation, which showed that the network of gene-gene-phenotype interaction can predict the
likelihood of CVA in patients with sickle cell anemia with 99.7% accuracy. We also validated the model using
an independent set of 114 individuals with an accuracy of 98%. In both tests, the accuracy was measured
by the frequency of individuals for whom the Bayesian network model predicted the correct phenotype with
probability above 0.5 [91]. With this approach, we discovered a network of interacting genes that may
confer susceptibility to CVA in patients with sickle cell anemia. Part of the network is displayed in Figure
5 and identifies polymorphisms of the genes MET and BMP6 as directly associated with CVA. The Markov
blanket of the node representing the phenotype (Stroke) identifies the gene-gene-environment interaction that
confers susceptibility to the disease. It consists of polymorphisms of the genes MET and BMP6, age of the
patient and whether or not the patient is affectedabthalassemia (node HB-SS). Dependencies between
polymorphisms of other genes may be interpreted as an effect of population admixture, while dependencies
between polymorphism of the same gene denote linkage disequilibrium [67].

3.2 Gene Expression Networks

The coherent probabilistic framework of Bayesian networks can be used not only to model genotype data but
also gene expression data. Compared to standard expression profiling methods, Bayesian networks are able
to represent the directionality of the influence among gene expression and they have been already deployed
to understand both gene expression [31] and protein-protein interactions [46].

Another area of application of Bayesian networks in functional genomics is modeling differential expres-
sion in comparative experiments. Typical statistical techniques used to identify genes that have differential
expression in two or more conditions work assuming that genes act independently [83]. Bayesian networks
can be used to identify genes with differential expression by simultaneously modeling the structure of gene-
gene interaction. An example is in Figure 6 that describes a network of gene expression interaction learned
from a case control study of prostate cancer. We used a data set of expression profiles derived from 102
prostatectomy specimens. Cases were 52 cancer specimens of patients undergoing surgery between 1996
and 1997, and controls were 50 normal specimens. The expression profiles were derived with the U95Av2
Affymetrix microarray and are described in [95]. We first analyzed the dataBwthcE [88], a program
for differential analysis that uses Bayesian model averaging to compute the posterior probability of differen-
tial expression. We selected about 200 genes with very large probability of differential expression and then
modeled the network of interaction of gene expression. We used information about known functions of some
genes to limit the search space and, for example, imposed the restriction that genes known as transcription
factors could only be tested as parents of all other nodes. In the absence of an independent set, the final
network was tested with 5-fold cross validation and had 93% accuracy in predicting the clinical status, and
an average accuracy of about 80% in predicting the expression of each gene given the others.

Besides the identification of a molecular profile based on those genes that are directly related to the clini-
cal status, the network displays some interesting associations. For example, changes in expression of TRC
(41468AT: a known enhancer of transcriptional activity specific for prostatic adenocarcinoma cell line) are
associated with changes of expression of several genes including SIM2(8968&anscription repression);

PSMA (174QG_AT: a gene associated with prostate cancer) and MRP (38I74 gene known as potential
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Figure 6:A Bayesian network associating genes that are differentially expressed between normal and tumor
specimens (node Condition). Genes are labelled by the Affymetrix probe ID.
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predictor of chemotherapy response). The probability of changes in expression of HepsinA376&3fne

with cell growth function) depends on both the clinical status and changes in expression of MRP and differen-
tial expression of the Hepsin gene influences changes in expression of AMACR (AT7@énarker of tumor
differentiation known to be essential for growth of prostate cancer [23, 26].) These directed associations sug-
gest a mechanism by which changes in the transcription factoryTiRiience changes in genes involved

in tumor growth. Another interesting fact is the directed association between Adipsin (80&82a gene
supposed to have a role in immune system biology) and CRBP1 (38634 gene known to contribute to
cancer by disrupting the vitamin A metabolism). One theory is that cancer arises from the accumulation of
genetic changes that induce unlimited, self-sufficient growth and resistance to normal regulatory mechanisms
and these two sets of dependencies are consistent with this conjecture.

Of course, the nature of the data collected in a case-control study limits the dependency structure to
represent associations rather than causal effects. This limitation is due to the data rather than the modeling
approach and data produced by controlled experiments have been used to induce causal networks [99, 106].
We will discuss this issue further in Section 4.3.

3.3 In Silico Integrative Genomics

The predictive capabilities of Bayesian networks can be deployed for in silico identification of unobserved
characteristics of the genome. Genetic studies are designed to identify regions of the genome associated
with a disease phenotype. The success rate of these studies could be improved if we were able to predict
in advance, before conducting the study, the likelihood of a SNP or a mutation in a particular region to
be indeed pathogenic. To do so, we need to integrate the information available about SNPs and mutations
with the available information about proteins, and predict that a particular change in the DNA will actually
lead to a change in the encoded protein. Using Bayesian networks, we have developed a novel algorithm to
predict pathogenic single amino acid changes, either non-synonymous SNPs (nsSNPs) — SNPs causing a
change in the encoded amino acid — or missense mutations, in conserved protein domains [8]. We found
that the probability of a microbial missense mutation causing a change in phenotype depended on how much
difference it made in several phylogenetic, biochemical, and structural features related to the single amino
acid substitution. We tested our model on pathogenic allelic variants (missense mutations or nsSNPs) in-
cluded in OMIM (www.ncbi.nlm.nih.gov/omim) and on the other nsSNPs in the same genes from dbSNP
(www.ncbi.nlm.nih.gov/SNP) as the non-pathogenic variants. Our results show that our model was able to
predict pathogenic variants with a 10% false-positive rate.

4 Advanced Topics

This section describes some extensions of Bayesian networks to classification and for modeling nonlinear
and temporal dependencies.

4.1 Bayesian Networks and Classification

The goal of many studies in genomics medicine is the discovery of a molecular profile for disease diagnosis or
prognosis. The molecular profile is typically based on gene expression [38, 68, 104]. Bayesian networks have
been used in the past few years as supervised classification models able to discover and represent molecular
profiles that characterize a disease [49, 109]. This section describes particular classification models that are
simple Bayesian networks.
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4.1.1 Classification

The term “supervised classification” covers two complementary tasks: the first is to identify a function map-
ping a set ofattributesonto aclass and the other is to assign a class label to a set of unclassified cases
described by attribute values. We denotebthe variable whose states represent the class lahedsd by
Y; the attributes. In our context, the class variable may represent a clinical status, and the attributes can be
gene products such as gene expression data or genotypes.

Classification is typically performed by first training a classifier on a set of labelled d¢emesg se) and
then using it to label unclassified castss{ set. The supervisory component of this classifier resides in the
training signal, which provides the classifier with a way to assess a dependency measure between attributes
and classes. The classification of a case with attribute vaglyes. . , y,« is then performed by computing the
probability distributionp(C' | y1x, - - -, yur) Of the class variable, given the attribute values, and by labelling
the case with the most probable label. Most of the algorithms for learning classifiers described as Bayesian
networks impose a restriction on the network structure, namely that there cannot be arcs pointing to the class
variable. In this case, by the local Markov property, the joint probabiliyix, . . ., yur, cx) Of class and
attributes is factorized as(c;.)p(y1k, - - -, Yok | cx). The simplest example is known adaive BayegNB)
classifier [25, 53], and makes the further simplification that the attribyitese conditionally independent
given the clasg’ so that

PWiks - yurler) = [ [ p(virler).
i

Figure 7:The structure of the Nlae Bayes classifier

Figure 7 depicts the directed acyclic graph ofa classifier. Because of the restriction on the network
topology, the training step for mB classifier consists of estimating the conditional probability distributions
of each attribute, given the class, from a training data set. When the attributes are discrete or continuous
variables and follow Gaussian distributions, the parameters are learned by using the procedure described in
Section 2.2. Once trained, tha classifies a case by computing the posterior probability distribution over
the classes via Bayes’ Theorem and assigns the case to the class with the highest posterior probability.

Other classifiers have been proposed to relax the assumption that attributes are conditionally independent
given the class. Perhaps the most competitive one i$rde= Augmented Nige Baye€raN) classifier [29] in
which all the attributes have the class variable as a parent as well as another attribute. To avoid cycles, the
attributes have to be ordered and the first attribute does not have other parents beside the class variable. Figure
8 shows an example of &N classifier with five attributes. An algorithm to inferraN classifier needs to
choose both the dependency structure between attributes and the parameters that quantify this dependency.
Due to the simplicity of its structure, the identification ofan classifiers does not require any search but
rather the construction of a tree among the attributes. An “ad hoc” algorithm &dlestruct-TANCTAN)
was proposed in [29]. One limitation of tlerAaN algorithm to buildTAN classifiers is that it applies only to
discrete attributes, and continuous attributes need to be discretized.
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Figure 8:The structure of aaN classifier

Other extensions of theBs try to relax some of the assumptions made byNBeor the TAN classifiers.
Some examples are thdimited Dependence Bayesian classifferbB) in which the maximum number
of parents that an attribute can havéd [§9]. Another example is thenrestricted Augmented Nee Bayes
classifier(aNB) in which the number of parents is unlimited but the scoring metric used for learning, the
minimum description length criterion, biases the search toward models with small number of parents per
attribute [29]. Due to the high dimensionality of the space of different ANB networks, algorithms that build
this type of classifiers must rely on heuristic searches. More examples are reported in [29].

4.1.2 Molecular Classification

Many learning algorithms show a high sensitivity to correlated features. In the case of data sets of gene

expression profiles measured with microarrays, the large number of genes must be drastically reduced in
order to improve the diagnostic accuracy. Many learning algorithms that build classifiers and perform feature

selection have been used in this context [3, 59, 50]. As an example, we uskd ted TAN classifiers

to build a molecular classification model using the data set of gene expression measured in prostatectomy
specimens (see Figure 6). Table 1, column 2, shows the test accuracy of the classifiers learned by different
algorithms that was measured with 5-fold cross validation. The first classifiel@sad the second classifier

is aTAN. In both cases the parameters were learned with the Bayesian approach discussed in Section 2.2.
Due the large number of input attributes, we used a filtered version of the wrapped feature selection algorithm

described in [54] to increase the predictive accuracy.

Column 3 shows the accuracy of the same classifiers that were built by selecting a subset of the genes and
shows that accuracy sensibly increases when feature selection is performed. The genes selected by the feature
selection algorithm are 32598, 38291at, 39315at, 37624at, 38059g_at, 36725at, 31666f_at, 39417at,
37632at and represent a molecular profile for classifying prostatectomy specimens into normal or tumor.
Figure 9 shows the TAN structure chosen by the CTAN algorithm with feature selection. It is interesting to
note that the selection of genes by the wrapped feature selection differs from those induced by the standard
Bayesian algorithm described in Section 2.2. Particularly, neither of the classifiers reaches the classification
accuracy of the Bayesian network model in Figure 6.

4.2 Generalized Gamma Networks

Most of the work on learning Bayesian networks from data has focused on learning networks of categorical
variables, or networks of continuous variables that are modelled by Gaussian distributions with linear depen-
dencies. However, linearity of the parent-child dependencies and normality of the data are limitations. This
section describes a new class of Bayesian networks that addresses these issues.
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ALGORITHM ALL ATTRIBUTES FEATURE SELECTION

NB 75.4902 87.2549
sCTAN 73.5294 80.3922

Table 1:Test accuracies for some classifiers without and with feature selection.
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Figure 9:The structure of the TAN classifier with feature selection in the gene expression dataset.

4.2.1 Learning and Representation

A feature of gene expression data measured with microarray is the apparent lack of symmetry and there is
evidence that they do not follow Gaussian distributions, even after a logarithmic transformation [84]. Figure
10 shows an example. The left histogram shows the density of a sample of 50 expression levels of the
Homo sapiens ubiquitin gene in the U95Av2 Affymetrix microarray. The distribution has an exponential
decay, with a long right tail. The histogram in the right panel displays the distribution of the log-transformed
data and shows the phenomenon that log-transforming the original data removes the right tail but introduces
a long left tail. This phenomenon is typically observed when log-transforming data that follow a gamma
distribution, with consequent bias induced to estimate the mean [65, Ch 8]. We recently introduced a new
class of Bayesian networks called Generalized Gamma networks) @ble to describe possibly nonlinear
dependencies between variables with non-normal distributions [86]. Compared to other Bayesian network
formalisms that have been proposed for representing gene-gene interactionsgR8]do not require to
discretize gene expression data, or to enforce normality or log-normality assumptions.

In aGGN the conditional distribution of each variabi¢ given the parent®a(y;) = {Yi1,. .., Yip@)}
follows a Gamma distributiol; |pa(y;), 0; ~ Gamma(a;, pi(pa(y;), 8;)), whereu;(pa(y;), 3;) is the con-
ditional mean ofY; andy; (pa(y;), 3:)?/a; is the conditional variance. We use the standard parameterization
of generalized linear models [65], in which the meafipa(y;), 5;) is not restricted to be a linear function
of the parameterg;;, but the linearity in the parameters is enforced inlthear predictorn;, which is itself
related to the mean function by tliek functiony; = g(n;). Therefore, we model the conditional density
function as:
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Figure 10:Distribution of expression data of the HSYUBG1 Homo sapiens ubiquitin gene in a data set of 50
prostatectomy samples measured with the U95Av2 Affymetrix microarray. The left panel shows the histogram
of the original expression data. The right panel shows the histogram of the log-transformed gene expression
data.

LINK g(*) LINEAR PREDICTOR?

IDENTITY p=rn mi = Bio + D2 Bij¥ij
INVERSE  p=n"" ni = Bio+ >, Biju;
LoG p=e’  ni=PBi+>;Bijlog(yis)

Table 2:Link functions and parameterizations of the linear predictor.
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whereu; = g(n;) and the linear predictoy; is parameterized as

ni = Bio + Zﬁijfj(pa(yi))

andf;(pa(y;)) are possibly nonlinear functions. The linear predietois a function linear in the parameters
0, butitis not restricted to be a linear function of the parent values, so that the generality of Gamma networks
is in the ability to encode general non-linear stochastic dependency between the node variables. Table 2
shows example of non-linear mean functions. Figure 11 shows some examples of Gamma density functions,
for different shape parameters = 1,1.5,5 and mearnu = 400. Note that approximately symmetrical
distributions are obtained for particular values of the shape parameter

Unfortunately, there is no closed form solution to learn the parameters 6land we have therefore to
resort to Markov Chain Monte Carlo methods to compute stochastic estimates [63], or to maximum likelihood
to compute numerical approximation of the posterior modes [48]. A well know property of generalized linear
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Figure 11: Example of Gamma density functions for shape parametets 1 (continuous line)p = 1.5
(dashed line), andv = 5 (dotted line) and meap = 400. For fixed mean, the parameterdetermines the
shape of the distribution that is skewed to the left for smahd approaches symmetry asncreases.

models is that the parametgtg can be estimated independentlyogf which is then estimated conditionally
on 5@' [65]

To compute the maximum likelihood estimates of the parametgrsvithin each family(Y;, Pa(y;)),
we need to solve the system of equatié¥isg p(D|6;)/06;; = 0. The Fisher Scoring method is the most
efficient algorithm to find the solution of the system of equations. This iterative procedure is a generalization
of the Newton Raphson procedure in which the Hessian matrix is replaced by its expected value. This
modification speeds up the convergence rate of the iterative procedure that is known for being usually very
efficient — it usually converges in 5 steps for appropriate initial values. Details can be found for example in
[65].

Once the ML estimates ¢f;; are known, say;, we compute the fitted meang, = g(BiOJij Biifi(pa(y:))
and use these quantities to estimate the shape parametBstimation of the shape parameter in Gamma
distributions is an open issue, and authors have suggested several estimators (see for example [65]). Popular
choices are the deviance-based estimator that is defined as

_ n—4q

e Wi — fir)?/ 02,
whereq is the number of parametess; that appear in the linear predictor. The maximum likelihood estimate
&; of the shape parametear would need the solution of the equation

Q;

I'(ay) R i
n+nlog(a;) +n F((oz‘)) + - Zlog(ﬂik) + Zlog(yik) - Z zz =0
7 k k 7 v

with respect tay;. We have an approximate closed form solution to this equation based on a Taylor expansion
that is discussed in [88].

Also the model selection process requires the use of approximation methods. In this case, we use the
Bayesian information criterion (BIC) [48] to approximate the marginal likelihoog lmgp(D|é) —nyplog(n)
whered is the maximum likelihood estimate 6f andn,, is the overall number of parameters in the network.
BIC is independent of the prior specification on the model space and trades off goodness of fit — measured
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Figure 12:Gamma networks induced from the 50 normal specimens (left) and 52 tumor specimens (right).

AFFY-ENTRY  Gene Name Gene Function

41706At alpha-methylacyl-CoA racemase cellular component

37639At Epsin cell growth

37605At COL2A1 collagen

41468At TCRy cellular defense

914 G_At ERG transcription regulation

40282S At Adipsin role in immune system biology

1831 At TGFS transforming grown factor

38291At Human enkephalin gene signal transduction

32598A Nel-like 2 cell growth regulation and differentiation

Table 3:The nine genes used in tkeN and their known functions.

by the term2log p(D|0) — and model complexity — measured by the tetlog(n). We note that BIC
factorizes into a product of terms for each variableand makes it possible to conduct local structural
learning.

While the general type of dependencies in Gamma networks makes it possible to model a variety of
dependencies within the variables, exact probabilistic reasoning with the network becomes impossible and
we need to resort to Gibbs sampling (see Section 2). Our simulation approach uses the adaptative rejection
metropolis sampling (ARMS) of [37] when the conditional density;|)’\y;, §) is log-concave, and adaptive
rejection with Metropolis sampling in the other cases. See [86] for more details.

4.2.2 An Example

We use a subset of nine of the gene expression data measured from the 102 prostatectomy specimens to show
the representation advantagess@®Ns. We modeled the dependency structure among the nine genes in the
normal and tumor specimens, with an initial order that was chosen by using information about their roles

in pathways, when known, and by ranking the remaining genes on the basis of the evidence for differential
expression. For example, the gene 34t (ERG) has a transcription regulation function that has been
observed in several tumors, so we left this gene high in the order and tested it as parent of all the other
nodes. Figure 12 depicts the dependency structures in the two groups. In both cases, we limited the search to
dependency models in which the link function was either the identityn or the inverse link: = 1/7. The

two network structures were validated by examining the blanket residuals to assess the goodness of fit for
each local dependency structure. In both networks we tested whether the standardized blanket residuals had
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Figure 13:Scatter plot of the dependency between 403&2 and 32598A in the twoGGNs induced from
the 50 normal specimens (left) and 52 tumor specimens (right). The lines are the dependency fitted by the
GGNs. Both plots are in log-scales.

means significantly different from 0 using standard t-tests, and we checked for departures from normality.
These tests confirmed the validity of the network structures induced from data, and the correctness of the
distributional assumptions.

Evidence of the biological meaning of the dependency structures encoded by the kwgives further
support that this technology can help to model complex gene-gene interactions in biological systems. For
example, in the network learned from the normal specimens, the gene COL2A1 (&Z&d%ollagene) is
independent of all other genes, whereas in the network learned from the tumor specimens, this gene is a child
of ERG (914at: an oncogene with transcription regulation functions). Independent studies have associated
changes of expression in TGF1831at: a gene with role in signalling pathways), with changes of expression
in COL2A1, and our models suggest a possible mechanism in which this occurs. In the network induced
from tumor specimens, TGHs directly influencing AMACR (41706t: a gene known as a marker of tumor
differentiation). In both networks, the dependency structure of Adipsin (4@&82 a gene supposed to
have a role in immune system biology) is essentially the same, besides the fact that Epsinai3 #688ne
with putative function in cell growth) is independent of Adipsin given FC@1468at: a gene with role
in cell defense) in the network learned from normal specimens. However, even for those genes with the
same dependency structure, the probability distributions that quantify these dependencies suggest different
gene-gene interactions. Figure 13 shows the smooth, non linear dependency between Adipsin and Nel-like 2
(32598A) in the twoGGNs induced from the 50 normal specimens (left) and 52 tumor specimens (right). The
two non linear dependencies show that changes of expression of Adipsin in the network learned from tumor
specimens have a much reduced effect on changes of expression of Nel-like 2. As mentioned earlier, one
theory is that cancer arises from the accumulation of genetic changes that induce unlimited, self-sufficient
growth and resistance to normal regulatory mechanisms. Our different dependency structures suggest that, in
the cancer specimens, the gene Adipsin has a weaker control on the gene Nel-like 2 that regulates cell growth
and differentiation. The reasonable biological explanation also points out an important featigrofby
modeling gene-gene interaction via non-linear dependereys can easily describe the biological effect
of gene expression saturation, in which gene expression control changes according to changes of expression
levels.
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Figure 14:A directed acyclic graph that represents the temporal dependency of three categorical variables
describing up (+) and down (+) regulations of three genes.

Alternative dependency structures can suggest new hypothetical pathways, as well as experiments to test
putative functions of genes. For example, the propagation of particular expression levels for some genes can
identify their impact on the expression level of other genes and provide a platfoimdibico experiments
based on the learned network.

4.3 Bayesian Networks and Temporal Dependency

One of the limitations of Bayesian networks is the inability to represents forward loops: by definition the di-
rected graph that encodes the marginal and conditional independencies between the network variables cannot
have cycles. This limitation makes traditional Bayesian networks unsuitable for the representation of many
biological systems in which feedback controls are a critical aspect of gene regulation. Dynamic Bayesian
networks provide a general framework to integrate multivariate time series of gene products and to repre-
sent feed-forward loops and feedback mechanisms [28] that is alternative to other network models of gene
regulation [94].

A dynamic Bayesian network is defined by a directed acyclic graph in which nodes continue to represent
stochastic variables and arrows represent temporal dependencies that are quantified by probability distrib-
utions. The crucial assumption is that the probability distributions of the temporal dependencies are time
invariant, so that the directed acyclic graph of a dynamic Bayesian network represents only the necessary and
sufficient time transitions to reconstruct the overall temporal process. Figure 14 shows the directed acyclic
graph of a dynamic Bayesian network with three variables. The subscript of each node denotes the time
lag, so that the arrows from the nodgg; ;) andY;_) to the nodeY; ;) describe the dependency of the
probability distribution of the variabl&; at timet on the value ofY; andY; at timet — 1. Similarly, the
directed acyclic graph shows that the probability distribution of the varigplgt timet is a function of the
value ofY; andY; at timet — 1. This symmetrical dependency allows us to represent feedback loops and we
used it to describe the regulatory control of glucose in diabetic patients [72]. A dynamic Bayesian network
is not restricted to represent temporal dependency of order 1. For example the probability distribution of the
variableYs at timet depends on the value of the variable at tilme 1 as well as the value of the varialitg
at timet — 2. The conditional probability table in Figure 14 shows an example when the varighlEs are
categorical.

By using the local Markov property, the joint probability distribution of the three variables attigieen
the past history (t—1y, - - - Y1(t—1), Y2t—1)» - - - » Y2(t—1)» Y3(t—1)s - - - » Y3(t—1) IS given by the product of the
three factors:
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Figure 15: Modular learning of the dynamic Bayesian network in Figure 14. First a regressive model is
learned for each of the three variables at timeand then the three models are joined by their common
ancestorsy(;—1), Ya(:—2) andYs,_o) to produce the directed acyclic graph in Figure 14.

PYLO [Y1(=1)s -+ > YL(t=1)> Y2(t=1)5 - - s Y2(t—=1)5 Y3(t—1)5 - - - Y3(t—1)) =  PWi)|¥1e—1), Y2(t-1))
P(Z/z(t) \111(t—1)» oY1=, Y2(t—1) - -5 Y26 1) Y3(t—1)5 - - - 7y3(t—l)) = p(y2(t) ‘yl(t—l)a y2(t—1))
PY3) | Y1t=1)5 - - s Y1t=1)> Y2(t=1)5 - - - > Y2(t=1)5 Y3(t=1)5 - - -  Y3e—1)) =  P(Use)|¥3(e=1), Ya(i—2))

that represent the probability of transition over time. By assuming that these probability distributions are
time invariant, they are sufficient to compute the probability that a process that starts from known values
Y1(1)> Y2(1)» ¥Y3(0)» Y3(1) €VOIves intoyy (ry, y2(1y, Y3(r), bY using one of the algorithms for probabilistic rea-
soning described in Section 2. The same algorithms can be used to compute the probability that a process
with valuesy, (1, y2(r), y3(r) at timeT" started from the initial stateg (1), y2(1), ¥3(0), ¥3(1)-

Learning dynamic Bayesian networks when all the variables are observable is a straightforward parallel
application of the structural learning described in Section 2.2. To build the network, we proceed by selecting
the set of parents for each varialigat timet, and then the models are joined by the common ancestors. An
example is in Figure 15. The search of each local dependency structure is simplified by the natural ordering
imposed on the variables by the temporal frame [32] that constrains the model space of each Variable
at timet: the set of candidate parents consists of the varialiles ), . . ., Y;:—,) as well as the variables
Yh—j forall h # i, andj = 1,...,p. The K2 algorithm [16] discussed in Section 2.2 appears to be
particularly suitable for exploring the space of dependency for each vaiighle The only critical issue is
that the selection of the largest temporal order to explore depends on the sample size, because each temporal
lag of orderp leads to the loss of the firgttemporal observations in the data set [107].

Dynamic Bayesian networks are an alternative approach to represent gene regulatory mechanisms by
approximating rates of change described by a system of differential equations with autoregressive models.
When the gene products are measured at regularly spaced time points, there is a simple way to approximate
the rate of changdy;)/dt = f(y,:) by afirst order linear approximation. This approach has been used to
model the rate of change by linear Gaussian networks [22]. However, the development of similar approxima-
tions for non regularly spaced time points and for general, non linear, kinetic equations with feedback loops
[11] is an open issue. The further advantage of dynamic Bayesian network is to offer an environment for
causal inference with well designed temporal experiments.
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5 Research Directions

This chapter has discussed the potential usefulness of Bayesian networks to analyze genomic data. However,
there are some limitations of the current representation and learning approaches that need further investiga-
tion. A main assumption underlying all learning algorithms is that the data are complete, so there are no
missing entries and both gene expression data measured with cDNA microarrays and genotype data have
missing values. Furthermore, often some of the variables in the data set are continuous and some are dis-
crete and to use standard algorithms for learning a Bayesian network from data, the continuous variables are
usually discretized with potential loss of information.

Mixed Variable Networks The process of learning Bayesian networks requires two components: a search
procedure to scan through a set of possible models and a scoring metric, such as BIC or the marginal likeli-
hood, to select one of the models. We have shown in Section 2.2 that when the variables in the network are
all continuous, a closed-form solution for the calculation of the marginal likelihood exists under the assump-
tion that each variable is normally distributed around a mean, whrieharly depends on its parent variables
[44,102]. The drawback is that they are heavily limited in their representation power, as they can only capture
linear dependencies among continuous variables. To increase their scope, Gaussian linear networks have been
extended into mixture of Gaussian networks, which model a conditional distribution as a weighted mixture
of linear Gaussian distributions and can, in principle, represent a wider variety of interactions. Unfortunately,
no closed form solution exists to compute the marginal likelihood of these distributions, and we have to resort
to computationally demanding approximation methods [14]. The normality assumption on the variables can
be relaxed to the more general case that the variables have distributions in the exponential family, and we
have introduced the family @GNs to describe dependency structures of non-normal variables with possibly
non-linear dependencies. The crucial assumptiandans is that all variables in the network have probability
distributions in the same family. An important and yet unsolved issue is the learning of mixed networks, in
which some variables are continuous and some are discrete. Imposing the assumption that discrete variables
can only be parent nodes in the network, but cannot be children of any continuous Gaussian node leads to
a closed form solution for the computation of the marginal likelihood [56]. This property has been applied,
for example, to model-based clustering by [74], and it is commonly used in classification problems [10].
However, this restriction can quickly become unrealistic and greatly limit the set of models to explore. As

a consequence, common practice is still to discretize continuous variables with possible loss of information,
particularly when the continuous variables are highly skewed.

Missing Data The received view of the effect of missing data on statistical inference is based on the ap-
proach described by Rubin in [76]. This approach classifies the missing data mechanism as ignorable or not,
according to whether the data are missing completely at random (MCAR), missing at random (MAR), or
informatively missing (IM). According to this approach, data are MCAR if the probability that an entry is
missing is independent of both observed and unobserved values. They are MAR if this probability is at most
a function of the observed values in the database and, in all other cases, data are IM. The received view is that,
when data are either MCAR or MAR, the missing data mechanism is ignorable for parameter estimation, but
it is not when data are IM.

An important but overlooked issue is whether the missing data mechanism generating data that are MAR
is ignorable for model selection [77, 85]. We have shown that this is not the case for the class of graphical
models exemplified in Figure 16 [85]. We assume that there is only one variable with missing data (the
variableYy in the DAG) and that its possible parents are all fully observed. To model the missing data
mechanism, we introduce the dummy variaBléhat takes on one of the two value® = 1 whenY} is
observed, and? = 0 whenY), is missing. The missing data mechanism can be described by the graphical
structure relating?, Y, andY, Y5, Y3: when R is not linked to any of the variables, data are MCAR; when
R is linked to any subset dfy, Y5, Y3 but notY;,, data are MAR; whelR is linked toY,, data are IM. If the
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Figure 16:An example of partially ignorable missing data mechanism. Top: The varakilethe Bayesian
network is only partially observed, while the parefiis Y3, Y5 are fully observed. Bottom left: The variable
R encodes whethér is observed g = 1) or not (R = 0). Because the variabl& is a child ofY7, which

is fully observed, data are MAR. Bottom right: Removing the variahl&om the dependency model foy
induces a link betweeYi and R so that the missing data mechanism becomes informative.

graphical structure is known, the missing data mechanism is ignorable for parameter estimation in the first
two cases. However, when the task is to learn the graphical structure from data, only a mechanism generating
data that are MCAR is ignorable. This fact is shown in the bottom right graph of Figure 16: when we assess
the dependency df; onYs, Y3 but notY7, the variableR is linked toY; so that the missing data mechanism

is informative for this model structure.

We defined this mechanism only partially ignorable for model selection and we showed how to discrim-
inate between ignorable and partially ignorable missing data mechanisms [85]. We also introduced two
approaches to model selection with partially ignorable missing data mechamigragable imputatiorand
model folding Contrary to standard imputation schemes [35, 60, 80, 100, 101], ignorable imputation ac-
counts for the missing-data mechanism and produces, asymptotically, a proper imputation model as defined
by Rubin [76, 78]. However, the computation effort can be very demanding and model folding is a determin-
istic method to approximate the exact marginal likelihood that reaches high accuracy at a low computational
cost, because the complexity of the model search is not affected by the presence of incomplete cases. Both ig-
norable imputation and model folding reconstruct a completion of the incomplete data by taking into account
the variables responsible for the missing data. This property is in agreement with the suggestion put forward
in [45, 60, 75] that the variables responsible for the missing data should be kept in the model. However, our
approach allows us to also evaluate the likelihoods of models that do not depend explicitly on these variables.

Although this work provides the analytical foundations for a proper treatment of missing data when the
inference task is model selection, it is limited to the very special situation in which only one variable is par-
tially observed, data are supposed to be only MCAR or MAR, and the set of Bayesian networks is limited to
those in which the partially observed variable is a child of the other variables. Research is needed to extend
these results to the more general graphical structures, in which several variables can be partially observed and
data can be MCAR, MAR or IM.
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